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1. Proposal’s context, positioning and objectives

1.1. Proposal’s context. This proposal is concerned with graphs and metrics, both on theo-
retical foundations and applications. Each of the themes developed here has many applications
due to the growing importance of this subject. Such applications can be found in real world
networks. For example, the hub labelling problem in road networks can be directly applied to car
navigation applications. Understanding key structural properties of large-scale data networks is
crucial for analyzing and optimizing their performance, as well as improving their reliability and
security. In prior empirical and theoretical studies researchers have mainly focused on features
such as small world phenomenon, power law degree distribution, navigability, and high cluster-
ing coefficients. Although those features are interesting and important, the impact of intrinsic
geometric and topological features of large-scale data networks on performance, reliability and
security is of much greater importance. Recently, there has been a surge of empirical works
measuring and analyzing geometric characteristics of real-world networks, namely the Gromov
hyperbolicity (called also the negative curvature) of the network. It has been shown that a
number of data networks, including Internet application networks, web networks, collaboration
networks, social networks, and others, have small hyperbolicity. Based on the experimental ob-
servation by Narayan and Saniee, Jonckheere et al. conjectured that the property, observed in
real-world networks, in which traffic between vertices tends to go through a relatively small core
of the network, as if the shortest path between them is curved inwards, may be due to global
curvature of the network. We proved this conjecture recently by using metric methods, namely
Helly type theorems and properties of injective hulls of hyperbolic graphs.

Metric graph theory was also indispensable in solving some open questions in concurrency
and learning theory in computer science and geometric group theory in mathematics. Median
graphs are exactly the 1–skeletons of CAT(0) cube complexes (which have been characterized
by Gromov in a local-to-global combinatorial way). They play a vital role in geometric group
theory (for example, in the recent solution of the famous Virtual Haken Conjecture). Median
graphs are also the domains of event structures of Winskel, one of the basic abstract models of
concurrency. This correspondence is very useful in dealing with questions on event structures.
For instance, we used it to disprove Rozoy-Thiagarajan and Thiagarajan’s conjectures about
nice labelings and regular labelings of event structures. Lopsided sets–a generalization of me-
dian graphs and particular partial cubes–seem to acquire an importance in designing sample
compression schemes for concept classes of bounded VC-dimension in computational learning
theory. We showed that they do not admit corner peelings, and this provided counterexamples
to some influential published work. Analogously to median graphs, bridged graphs have been
characterized as the 1–skeletons of systolic complexes. Systolic complexes satisfy many global
properties of CAT(0) spaces (contractibility, fixed point property) and were suggested as a vari-
ant of simplicial complexes of combinatorial nonpositive curvature. A remarkable appearance
of modular graphs occurred in classifying the complexity of the so-called 0–extension problem,
a combinatorial optimization problem generalizing the minimum cut problem and having ap-
plications in computer vision. A dichotomy characterization of tractability of the 0–extension
problem was provided by Hirai: if G is an orientable modular graph, then the 0–extension
problem on G is polynomial, otherwise it is NP-hard.

Many classical algorithmic problems concern distances: shortest path, center and diameter,
Voronoi diagrams, TSP, clustering, etc. Algorithmic and combinatorial problems related to
distances also occur in data analysis. Low-distortion embeddings into `1-spaces (theorem of
Bourgain and its algorithmical use by Linial et al.) were the founding tools in metric meth-
ods. Recently, several approximation algorithms for NP-hard problems were designed using
metric methods. Other important algorithmic graph problems related to distances concern the



construction of sparse subgraphs approximating inter-node distances and the converse, augmen-
tation problems with distance constraints. Finally, in the distributed setting, an important
problem is that of designing compact data structures allowing very fast computation of inter-
node distances or routing along shortest or almost shortest paths.

Besides computer science and mathematics, applications of structures involving distances can
be found in archeology, computational biology, statistics, data analysis, etc. The problem of
characterizing isometric subgraphs of hypercubes has its origin in communication theory and
linguistics. In the search for a method for chronologically ordering archaeological deposits,
the archeologist Robinson introduced in 1951 a distance measure which now bears his name
(Robinson dissimilarity) and is the standard distance model for seriation. To take into account
the recombination effect in genetic data, the mathematicians Bandelt and Dress developed in
1991 the theory of canonical decompositions of finite metric spaces. Together with geneticists,
Bandelt successfully used it over the years to reconstruct phylogenies, in the evolutional analysis
of mtDNA data in human genetics. One important step in their method is to build a reduced
median network that spans the data but still contains all most parsimonious trees. As mentioned
above, the median graphs occurring there constitute a central notion in metric graph theory.

With this proposal, we aim to participate at the elaboration of this new domain of Metric
Graph Theory, which requires experts and knowledge in combinatorics (graphs, matroids), ge-
ometry, and algorithms. This expertise is distributed over the members of the consortium and
a part of the success of our project it will be to share these knowledges among all the members
of the consortium. This way we will create a strong group in France on graphs and metrics.

1.2. Scientific objectives. The central subject of metric graph theory (MGT) is the investiga-
tion and characterization of graph classes whose metric satisfies the main metric and convexity
properties of classical metric geometries like Rn with l2, l1, or l∞–metric, hyperbolic spaces,
hypercubes, trees. Such central properties are convexity of balls, Helly property for balls, ge-
ometry of geodesic or metric triangles, isometric and low-distortion embeddings, retractions,
treelikeness, uniqueness or existence of medians, etc. The main classes of graphs central to
MGT are median graphs, Helly graphs, partial cubes and `1–graphs, lopsided sets, bridged
graphs, Gromov hyperbolic graphs, modular and weakly modular graphs. Other classes arise
from combinatorics and geometry: basis graphs of matroids, tope graphs of oriented matroids,
dual polar spaces. Later, it turned out that many classes of graphs from MGT give rise to
important cubical and simplicial complexes, like CAT(0) cube complexes or systolic complexes.

In the project, we will try to make substantial contributions to combinatorial, algorithmic,
geometric, and topological structure of graph classes occurring in metric graph theory and of
their associated cell complexes by developing and exploiting theory for common structures and
structural similarities that occur in problems from diverse areas. We hope to use this knowledge
for solving questions in computer science (concurrency and machine learning), discrete mathe-
matics, and combinatorial optimization. We would also like to develop algorithms for distance
problems related to data analysis, network analysis, distributed computing, and seriation.

1.3. Main themes. The project focuses on two main subjects “Structure in metric graph theory”
and “Algorithms in metric graph theory”, consisting of strongly interconnected research themes:

S1. Local-to-global characterizations
S2. Median graphs and event structures
S3. Lopsided sets and sample compression
S4. Matroidal structures
S5. Isometric and low distortion embeddings
S6. Packing and covering with balls, identifying codes, and χ-boundedness
A1. Algorithmic aspects of hyperbolic graphs
A2. Algorithms for graph classes from MGT
A3. Finite metric spaces: approximation and realization
A4. Seriation and classification.

For each theme we will formulate the main problems on which we would like to work and show
their relevance, the state-of-art and our previous contributions. We summarize the description of
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each theme with the formulation of main objectives. The missing definitions to the first subject
can be found in the survey [56].

1.4. Structure in Metric Graph Theory.

Theme S1: Local-to-global characterizations. The local-to-global approach originated in Rie-
mannian geometry (Cartan-Hadamard theorem) and was extended by M. Gromov to non-
positively curved metric spaces. In the particular setting of CAT(0) spaces, Gromov’s theorem
asserts that a complete simply connected geodesic metric space is CAT(0) iff it is locally CAT(0).
Equivalently, it asserts that the universal cover of a locally CAT(0) space is CAT(0). In the case
of CAT(0) cube complexes, Gromov specified this result in a purely combinatorial way: these
are simply connected cube complexes in which the links of vertices are flag (clique) complexes.

A local-to-global approach in MGT consists in associating to a graph G a cell complex X(G)
(triangle, square, triangle-square complex) so that G belongs to a class of graphs G iff X(G) is
simply connected and satisfies a local combinatorial property. This way, we showed in [73] that
median graphs are exactly the graphs whose square complex is simply connected and satisfies
the cube condition (any three squares pairwise intersecting in edges live in a cube) and (using
Gromov’s characterization) are exactly the 1–skeletons of CAT(0) cube complexes. Analogously
to median graphs, bridged graphs have been characterized in [73] as the 1–skeletons of simply
connected simplicial flag complexes in which the links of vertices do not contain induced 4– and
5–cycles. Those complexes were rediscovered in [98, 106, 137] and dubbed systolic complexes.
Systolic complexes satisfy many global properties of CAT(0) spaces (contractibility, fixed point
property) and were suggested in [106] as a variant of simplicial complexes of combinatorial
nonpositive curvature. This research culminated recently in [22] and [19] with a local-to-global
characterization of basis graphs of matroids (solving a conjecture by Maurer [116]) and weakly
modular graphs, Helly, and dual polar graphs. For example, we showed that basis graphs of
matroids are exactly the graphs whose triangle-square complexes are simply connected and which
are locally basis graphs (balls of radius 3 are like balls in basis graphs). Weakly modular graphs
have been characterized in the same vein: these are exactly the graphs whose triangle-square
complexes are simply connected and which are locally weakly modular (balls of radius 3 are like
balls in weakly modular graphs). We also showed that Helly graphs are exactly the clique-Helly
graphs with simply connected triangle complexes. Analogously, our characterizations of dual
polar graphs from one hand simplifies that of Cameron [70] and shows that dual polar graphs
represent a natural subclass of weakly modular graphs, and, on the other hand, provides an
alternative proof of a difficult result of Brouwer and Cohen [88].

The results of [19] provide a deep and quite complete theory of weakly modular graphs and
their associated cell complexes. Nevertheless, there are still many open question about them,
some of them raised in [19]. One of them will be to investigate the properties of groups acting
on Helly graphs. Are they biautomatic? Do they admit a geodesic bicombing? It will be also
important to extend the results of [19] to larger classes of graphs, for example to meshed graphs
(generalizing weakly modular graphs and basis graphs of matroids) or to graphs with convex
balls (generalizing bridged graphs).

The graphs with convex balls have been characterized in [130, 92] via forbidden isometric
cycles. For example, in the case of graphs G with convex balls, all isometric cycles have length 3
or 5. Thus, if we define a 2-dimensional cell complex X(G) with a cell for each triangle and each
induced pentagon of G, then X(G) is simply connected. Thus one can ask under which local
conditions the 1-skeleton of a simply connected triangle-pentagonal complex has convex balls?

A graph G = (V,E) is called meshed if for any three vertices u, v, w with d(v, w) = 2, there
exists a common neighbor x of v and w such that 2d(u, x) ≤ d(u, v) + d(u,w). Meshed graphs
are thus characterized by some (weak) convexity property of the radius functions d(·, u) for
u ∈ V. This condition ensures that all balls centered at cliques induce isometric subgraphs of
G. Analogously to the theory of weakly modular graphs, we would like to develop a metric and
local-to-global theory for meshed graphs. What meshed graphs lead to CAT(0) cell complexes or
to cell complexes with combinatorial nonpositive curvature? This is a much harder task because
meshed graphs constitute a much larger class with a different behavior. We showed in [19]
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that triangle-square complexes of meshed graphs cannot be characterized in a local-to-global
way. Nevertheless, we hope that for some classes of meshed graphs and under some stronger
conditions such results are possible. It will be interesting to see what classes of graphs occurring
in point-line geometries (as dual polar graphs), in complexes arising from topology of surfaces
(curve, arc, and Kakimizu complexes), or in combinatorics (like basis graphs of matroids) are
meshed or satisfy similar properties. In our opinion, one candidate is the class of constant-
parity jump systems of Bouchet and Cunningham [65], which found numerous applications in
discrete convexity [119]. A jump system is a set of integer points with an exchange property
generalizing that of bases of matroids. Let E be a finite set. For X = (Xe), Y = (Ye) ∈ ZE ,
define [X,Y ] = {Z ∈ ZE : min{Xe, Ye} ≤ Ze ≤ max{Xe, Ye},∀e ∈ E}. In other words, [X,Y ]
is the interval between the integer vectors X and Y in the grid ZE . For X,Y ∈ ZE , a unit
vector s ∈ ZE is called an (X,Y )-increment if s = (0, . . . , 0, se, 0 . . . , 0) where se ∈ {−1,+1}
and X + s ∈ [X,Y ]. Then J ⊆ ZE is a constant-sum jump system [65, 119] if for any X,Y ∈ J
and for any (X,Y )-increment s, there exists an (X + s, Y )-increment t such that X + s+ t ∈ J .
Analogously to characterizations of basis graphs of matroids and even ∆-matroids [116, 74, 22],
we would like to investigate the metric and local-to-global structure of jump systems. Are they
meshed? How to characterize them metrically or in a local-to-global way?

Objectives: Local-to-global characterization of graphs with convex balls and meshed graphs;
metric and local-to-global characterizations of graphs of jump systems; Helly groups.

Related themes: S2,S3,S4,S5,A2

Theme S2: Median graphs and event structures. Event structures introduced by Nielsen, Plotkin,
and Winskel [122, 136, 135] are a widely recognized abstract model of concurrent computation.
Thiagarajan [132] and Rozoy and Thiagarajan [125] formulated two interesting and important
combinatorial conjectures about event structures and their equivalence with other models of
concurrency. Using the equivalence between domains of event structures, median graphs, and
CAT(0) cube complexes we disproved both these conjectures. In the current project, we would
like to prove that both conjectures hold for some important classes of event structures.

An event structure is a triple E = (E,≤,^), where E is a set of events, ≤ is a partial order
on E, called causal dependency, and ^ is a binary relation on E called conflict. For all e, e′, e′′,
if e ^ e′ and e′ ≤ e′′, then e ^ e′′ (conflict e ^ e′′ is inherited from conflict e ^ e′). A conflict
e ^ e′ is minimal if it is not inherited from another conflict. The events which are not is causal
dependency or in conflict are called concurrent. The events e and e′ are independent if they are
either concurrent or in minimal conflict. An independent set is a set of pairwise independent
events. The degree of E is the maximum size of an independent set. A labeling is a map
λ : E → Λ, where Λ is some alphabet, and λ is a nice labeling if λ(e) 6= λ(e′) whenever e and e′

are independent. A configuration is a downward closed conflict-free subset of events. The domain
D(E) is the set of configurations ordered by inclusion. The filter of a configuration C is the set
of all configurations containing C. An event structure E is regular if D(E) contains only a finite
number of isomorphic classes of filters. A regular labeled event structure is an event structure
E which admits a finite nice labeling λ such that the domain D(E) has only a finite number of
classes of isomorphisms of colored filters. Rozoy and Thiagarajan [125] conjectured that any
event structure with finite degree has a finite nice labeling. Thiagarajan’s [132] conjecture asserts
that any regular event structure admits a regular nice labeling, or, equivalently, that regular event
structures correspond exactly to finite 1-safe Petri nets (a related conjecture of Badouel et al.
(1999) [54] asserts that the domains of regular event structures are recognizable).

The domain D(E) of an event structure E naturally gives rise to a median graph G and an
accompanying CAT(0) cube complex X. Indeed, let G be the graph whose vertices are the
configurations with C and C ′ joined by an edge iff C = C ′ ∪ {e} for some event e. It was shown
in [59] that G is a median graph, and thus its cube complex X is CAT(0) [73]. The hyperplanes
of X correspond to the events in E. Conversely, each CAT(0) cube complex X and any vertex
v ∈ X, gives rise to an event structure whose events are the hyperplanes of X. Hyperplanes
H and H ′ define concurrent events iff they cross, and H ≺ H ′ iff H separates H ′ from v. The
events defined by H and H ′ are in conflict iff H and H ′ do not cross and neither separates the
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other from v. Therefore, rephrasing questions about event structures in the language of median
graphs and CAT(0) cube complexes can lead to their solution.

We used this correspondence in [24] and [18] to disprove both Rozoy and Thiagarajan’s and
Thiagarajan’s and Badouel et al. conjectures. Haglund, Niblo, Sageev, and Chepoi conjectured
that any CAT(0) cube complex of bounded degree can be isometrically embedded into a finite
number of trees. In [32], we adapted the counterexample from [24] to also disprove the embed-
ding conjecture by Haglund et al. and we solved in the positive nice labeling and embedding
conjectures for two-dimensional CAT(0) cube complexes.

Even if all previous conjectures turned out to be false, it would be important to exhibit classes
of event structures for which these fundamental conjectures are true. Badouel et al. [54] showed
(with a difficult proof) that Thiagarajan’s conjecture hold for context-free domains. Context-free
graphs are particular Gromov-hyperbolic graphs. An interesting challenge would be to establish
Thiagarajan’s conjecture for Gromov-hyperbolic domains. A positive answer to this question
would show that deciding if a regular event domain admits a regular nice labeling is undecidable
[18]. Haglund [99] proved that Haglund et al. embedding conjecture is true for hyperbolic
CAT(0) cube complexes. Adapting his proof, one can also show that Rozoy and Thiagarajan’s
conjecture is also true in this case. Thiagarajan’s conjecture was positively solved by Nielsen
and Thiagarajan [123] for conflict-free event structures. A possible way to extend their result is
to consider this conjecture for confusion-free domains introduced by Nielsen et al. [122]. From
geometric and combinatorial points of view, context-free and conflict-free domains have quite
different structural properties and give rise to different kinds of CAT(0) cube complexes. For
instance, in context-free domains (and more generally, hyperbolic domains), isometric square-
grids are bounded while conflict-free domains can contain infinite square-grids.

Objectives: Thiagarajan’s conjecture for hyperbolic and confusion-free domains.

Related themes: S1,S3,S4,A1

Theme S3: Lopsided sets and sample compression. A long-standing open problem in computa-
tional learning theory is a problem by Littlestone and Warmuth (1986) asking whether for any
concept class C ⊆ {0, 1}U of VC-dimension d there always exists a compression scheme whose
size is of order of d. In these schemes the input sample is compressed to a small subsample that
encodes a hypothesis consistent with the input sample. The way to design sample compression
schemes is to construct for each concept class C a representation map, i.e., an injective map
r : C → {0, 1}U such that |r(C)| = O(d) and for any C,C ′ ∈ C the following non-clashing
condition holds: C ∩ (r(C) ∪ r(C ′)) 6= C ′ ∩ (r(C) ∪ r(C ′)). At first glance, this has nothing
to do with the current project. However, as we will show below, a crucial particular case for
which this problem is open is that of lopsided sets (a class of partial cubes generalizing median
graphs). In this case, the problem can be restated in a truly combinatorial way and its solution
can open perspectives for solving the general case.

Recall that a subset Y ⊆ U is shattered by C ⊆ {0, 1}X if {Y ∩ C : C ∈ C} = {0, 1}Y . The
VC-dimension d of C is the largest size of a shattered set. The famous Sauer lemma asserts
that if the VC-dimension of C is d and |U | = n, then |C| ≤

∑d
i=0

(
n
i

)
. The concept classes for

which the upper bound is sharp are called maximum classes, and constitute important and well-
studied objects. Kuzmin and Warmuth [112] constructed representation maps for maximum
classes. They also noticed that the so-called corner peelings define natural representation maps
and conjectured that maximum classes always admit corner peelings (a corner peeling of C is
a dismantling order of the concepts C1, . . . , Cn of C such that each Ci belongs to a unique
cube in the concept class {Ci, Ci+1 . . . , Cn}). This conjecture was resolved in the affirmative by
Rubinstein and Rubinstein [126] using geometric and topological techniques.

Another important general result for concept classes C is the following sandwich lemma.
Denote by X(C) the collection of all shattered by C subsets of U . Denote also by X(C) the
collection of all strongly shattered by C subsets of U , i.e., subsets Y such that there exists
an Y -cube included in C. Both X(C) and X(C) are simplicial complexes and X(C) ⊆ X(C).
The sandwich lemma [63, 86, 57] asserts that |X(C)| ≤ |C| ≤ |X(C)| holds for any C. The
concept classes C for which equality |C| = |X(C)| were called ample [86, 57] or extremal [63]. It
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turned out that this is equivalent to the equality X(C) = X(C) (due to this, we will denote this
complex by X(C)) and they are equivalent to lopsided sets studied before in [114]. Lopsided
sets generalize median structures and maximum classes and can be characterized in a multitude
of combinatorial, recursive, and metric ways. In particular, they are exactly the isometric
subgraphs of the hypercube {0, 1}U such that for any strongly shattered set Y any two Y -cubes
Q′, Q′′ included in C can be connected by a shortest gallery consisting of Y -cubes of C.

Due to the equality |C| = |X(C)| for lopsided sets, one can ask if there exists a bijective map
r : C → X(C) which is a representation map. This question was asked recently by Moran and
Warmuth [118]. They also conjectured that lopsided (extremal) classes admit a corner peeling.
The same question was asked before by Weideman [134] and by Chepoi (unpublished, 1997).
Since 2004-2005 we know (unpublished) that it has a negative answer: we showed that corner
peeling of a lopsided set C is equivalent to an isometric dismantling of C and to the extendable
shellability of the octahedron dual to the cube {0, 1}X . However, in her PhD thesis from
2004, Tracy Hall [101] showed that octahedra are not extendably shellable. Her counterexample
provides us with a lopsided set C on 299 vertices (concepts) of a 12-dimensional cube not having
any corner. In fact, this counterexample is a maximum class of VC-dimension 3, showing that
the result of [126] is false. After communicating this example to Moran and Warmuth, they
noticed that it also contradicts the representation map constructed in [112], thus the question
of existence of representation maps for maximum classes is also open.

In the attempt of constructing representation maps for lopsided classes, we proved a local-
to-global result which makes a link between representation maps and unique sink orientations
(USO) (such orientations were previously intensively studied for cubes [131]). We hope that this
structural characterization can be helpful in constructing representation maps. If representation
maps for lopsided classes will be constructed, then the general Littlestone and Warmuth problem
can be attacked from the following combinatorial angle: show that any maximal (by inclusion)
concept class C of VC-dimension d can be covered by O(d) lopsided sets of VC-dimension O(d).

Objectives: Representation maps for lopsided and maximum classes; covering of concept
classes of VC-dimension d with O(d) lopsided classes of O(d) dimension.

Related themes: S1,S2,S4,S6,A2

Theme S4: Matroidal structures. A matroid on a set X is a collection B of subsets of X, called
bases, satisfying the exchange property: for all A,B ∈ B and i ∈ A\B there exists j ∈ B\A such
that A \ {i} ∪ {j} ∈ B. All bases have the same cardinality. The basis graph of B is the graph
whose vertices are the bases of B and whose edges are the pairs A,B such that |A4B| = 2. The
basis matroid polytope is the convex hull of the indicator vectors of bases. It is well-known that
the basis graph is the 1-skeleton of the basis matroid polytope. Basis graphs have been nicely
characterized in a metric way by Maurer [116] (a local-to-global characterization was provided
in [22]); for similar characterizations of even ∆-matroids see [74, 22].

Some of the most important open questions about matroids are about their bases (for example,
Rota’s conjecture for which there is a polymath project) or their basis graphs (cyclic ordering
of bases, matroids are expanders). Some of these questions can be considered also for even
∆-matroids, dual polar graphs, or other subclasses of meshed graphs. We would like to use our
knowledge of basis graphs to approach this kind of difficult questions. The first question is a
conjecture by Wiedemann [134] about cyclic ordering of bases of a matroid. Our interest to
this conjecture comes from the fact that it can be formulated in completely metric terms: any
two bases B′, B′′ of a matroid lie on a common isometric cycle of the basis graph. Notice that
this property holds for dual polar graphs [19]. Another question is the difficult conjecture by
Mihail and Sudan (unpublished) that matroids are expanders (more exactly, that basis graphs
of matroids are expanders). A graph G = (V,E) is an expander if for any partition of V into
V ′, V ′′ the number of edges running between V ′ and V ′′ is at least min{|V ′|, |V ′′|}. One method
of attempting to prove that a graph G is an expander is the canonical path method. It consists
in constructing for each pair of vertices x, y an (x, y)- and an (y, x)-path such that for each edge
uv of G there exists at most |V | paths passing via uv. We believe that this conjecture is related
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with the previous one and that as the canonical paths between two bases B′, B′′ one can select
the paths in the isometric cycle passing via B′ and B′′.

The next problem was asked by Mayr and Plaxton [117] for graphic matroids and is motivated
by the problem of computing k-minimal bases of matroids. We will formulate it the general
context of matroids. Let f : V → R be a function on a graph G = (V,E). Let α1 < α2 < . . . <
αm be the values taken by f . A vertex v has rank i if f(v) = αi. Mayr and Plaxton [117] proved
that if T is a minimum spanning tree of a some graph and i ≤ m, then there exists a spanning
tree T ′ or rank i such that the distance d(T, T ′) between T and T ′ in the basis graph is ≤ i− 1.
They also formulated the following conjecture: if 1 ≤ j < i ≤ m and T is a spanning tree of
rank j, then there exists a spanning tree of rank i at distance ≤ i− 1 from T . We call a function
f on a graph G square-additive if for any square uvwx of G, f(u) + f(w) = f(v) + f(x). Any
function on bases which is the sum of the weights of the elements is square-additive; compare
with discrete convex functions [119]. The result and the conjecture of Mayr and Plaxton [117]
can be extended to square-additive functions on bases graphs of matroids: f is a square-additive
function on a basis graph taking m different values, 1 ≤ j < i ≤ m, and B is a basis of rank j,
then there is a basis B′ of rank i at distance ≤ i − 1 from B. This kind of results are relevant
to the structure of landscapes of square-additive functions and provide bounds for the number
of steps in descent-type algorithms of finding k-minima of such functions.

The Tutte polynomial of a matroid is a famous combinatorial invariant, involving a huge
literature and appearing in a number of contexts, ranging from algebraic graph theory and
enumerative combinatorics to knot theory and statistical physics. It can be seen as witnessing
various structural properties of bases in matroids and of orientations (or signatures) in oriented
matroids (or hyperplane arrangements), by means of counting or decomposing objects (bases
with respect to activities, no-broken-circuit subsets, orientations with respect to activities, etc.).
The active bijection ([43, 44] and other papers in this series) relates together those objects and
properties in matroids and oriented matroids. In relation with MGT, these objects and proper-
ties can often be expressed in terms of distances and partitions in associated graphs, polytopes
and hypercubes: basis activities, whose generating series is the Tutte polynomial, can be inter-
preted as distances of bases to the minimal/maximal lexicographic bases; region activities can
be viewed as distances in the face lattice, and hence in the cocircuit/tope graphs, with respect
to the minimal/maximal flag of faces of a topological representation; subset activities can be un-
derstood in terms of a partition of the (subset) hypercube into boolean lattices associated with
bases (themselves forming a graded lattice whose lattice-rank is given by basis activities); orien-
tation activities can be understood in terms of a partitions of the (reorientation) hypercube into
boolean lattices given by the above region activities along with duality. The way these objects
and properties can be understood in these terms, they are likely to be more understandable or
generalizable in metric graph theory or in the covector signature studied in this project (partial
cubes, lopsided sets, COMs, etc.), and be related to other combinatorial structures.

We would also like to continue the development of the theory of complexes of oriented ma-
troids (COMs), recently introduced and investigated in [58]. In [58] we proposed a common
generalization of oriented matroids (OMs), median graphs, and lopsided sets, called COMs, and
intimately related to MGT. In this generalization, global symmetry and the existence of the
zero sign vector, required for OMs, are replaced by local relative conditions. COMs can be
viewed as complexes whose cells are OMs and which are glued together in a lopsided fashion
These novel structures can be characterized in terms of two axioms, generalizing the familiar
characterization for oriented matroids. Like hyperplanes of CAT(0) cube complexes, the hyper-
planes of COMs are COMs and we characterize COMs in terms of their hyperplanes. We also
described a gluing scheme by which every COM can successively be erected as a certain complex
of oriented matroids, in essentially the same way as a lopsided set can be glued together from
its maximal cubes. A realizable COM is represented by a hyperplane arrangement restricted
to an open convex set. Among these are the examples formed by linear extensions of ordered
sets, generalizing the OMs corresponding to the permutohedra. Relaxing realizability to local
realizability, we capture a wider class of combinatorial objects: we show that CAT(0) Coxeter
zonotopal complexes give rise to locally realizable COMs. The characterizations of COMs via
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hyperplanes or carriers is metric; moreover, the tope graphs of COMs are partial cubes. More
recently, the paper [109] (generalizing and interpreting the results of [114] and [83] in a metric
way) presented a characterization of tope graphs of COMs as partial cubes in which antipodal
subgraphs are gated. In the project, we would like to generalize the theory of COMs along the
lines the theory of OMs was developed. Namely, we would like to define for COMs the duality
theory and the basis orientations (in case of OMs they are characterized via the chirotope).
One of the principal conjectures of [58] is that COMs are convex subgraphs of OMs (i.e., they
can be represented as the intersection of halfspaces of an OM). This extends the conjecture
of Lawrence [114] that the lopsided sets are exactly the convex subgraphs of uniform oriented
matroids. Another (quite opposite) conjecture is that of Las Vergnas claiming that any simple
pseudohyperplane arrangement admits a simplicial cell. In metric terms, this is equivalent to
say: any antipodal partial cube G whose intersection with any proper subcube is lopsided has
a vertex of degree at most the dimension of G (the dimension of the largest cube of G). It will
be interesting to see how these two conjectures work for Tracy Hall’s example [101].

Objectives: Wiedemann cyclic ordering of bases conjecture; Mayer and Plaxton landscape
conjecture; generalizations of properties involving the Tutte polynomial for matroids and
oriented matroids in terms of cubes and distances; duality theory for COMs; COMs as
convex subgraphs of OMs; Las Vergnas’s conjecture about simplicial cells.

Related themes: S1,S2,S3,A2

Theme S5: Isometric and low distortion embeddings. A metric space (X, d) is isometrically
embeddable into a host metric space (Y, d′) if there exists a map ϕ : X 7→ Y such that
d′(ϕ(x), ϕ(y)) = d(x, y) for all x, y ∈ X. More generally, ϕ : X 7→ Y is an embedding with
multiplicative distortion λ ≥ 1 if d(x, y) ≤ d′(ϕ(x), ϕ(y)) ≤ λ · d(x, y) for all x, y ∈ X. In this
project, we would like to address some questions about isometric embeddings of graphs into
hypercubes and half-cubes, and about existence of bounded distortion `1-embeddings of planar
graphs and 1-skeletons of some 2-dimensional cell complexes.

Djoković [85] characterized graphs isometrically embeddable into hypercubes in the following
simple but pretty way: G = (V,E) can be isometrically embedded into a hypercube iff G
is bipartite and for any edge uv, the (disjoint) sets W (u, v) and W (v, u) are convex, where
W (u, v) = {x ∈ V : d(x, u) < d(x, v)}. The pairs of disjoint halfspaces {W (u, v),W (v, u)} define
a space with walls. Recently we found a Djoković-type characterization of graphs isometrically
embeddable into Johnson graphs [25]. Shpectorov [127] provided an efficient characterization of
all `1-graphs (`1-graphs are the graphs which can be isometrically embedded into an `1-space): a
finite graph G is an `1-graph iff G isometrically embeds in a Cartesian product of octahedra and
half-cubes. For the moment a structural characterization of `1-graphs or isometric subgraphs
of half-cubes is missing; see [84, Problem 21.4.1]: provide a structural characterization of `1-
graphs and of graphs isometrically embeddable into half-cubes. Give a forbidden-subgraph or a
local-to-global characterization of `1-weakly modular and `1-meshed graphs. Due to the major
role played by the dual polar graphs in the structure of (s)weakly modular graphs [19], it would
be interesting to characterize isometric subgraphs of Cartesian products of dual polar graphs.

The following question concerns a Menger-type characterization (in [51] called local-to-global
characterization) of isometric embedding into `1-spaces of dimension n. Let cp(n) denote the
least positive integer such that a metric space (X, d) isometrically embeds into Rn with `p-
metric iff each subspace of X with at most cp(n) points embeds. The Menger theorem asserts
that c2(n) = n + 3. In [55], we showed that c1(2) = c∞(2) = 6. J. Edmonds [89] proved that
c∞(n) =∞ for n ≥ 3, i.e., the `∞-metrics with n ≥ 3 do not admit a Menger-type theorem. An
important remaining open question is Is c1(n) for n ≥ 3 finite? Compute c1(3). We conjecture
that c1(3) is finite (it was noticed in [55] that c1(3) ≥ 10). The simpler variants can be asked
for `1-embedding of graph-metrics and for isometric embedding into any normed plane.

Finally, we would like to investigate the question of embeddability with constant distortion
of several graph classes into `1-spaces. The motivation stems from the famous planar embedding
conjecture of Linial, London, and Rabinovich [72, 115, 97] asserting that metrics of planar
graphs can be embedded into `1 with constant distortion. We would like to find an approximate
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Djoković-like result for this problem, which can be useful for constructing the embeddings. For
this probably one has to appropriately relax the notion of convexity. In [20] we proved that
all planar graphs which are 1-skeletons of planar CAT(0) complexes with regular Euclidean
polygons as cells are `1-embeddable with distortion at most 2 (this significantly improved and
simplified the result of [128]). Finding other large classes of planar graphs `1-embeddable with
bounded distortion is an interesting and important question. It can be shown that to solve the
planar embedding conjecture it suffices to solve it for planar quadrangulations, i.e., for planar
graphs in which all inner faces are 4-cycles. One interesting class of such quadrangulations
is constituted by the planar special cube complexes of Haglund and Wise [100]. For example,
the square grid from which we removed a set of disjoint rectangular subgrids is a special cube
complex. Already for this particular class we do not know how to perform the `1-embedding.

Beside planar metrics, only very few classes of finite metrics or graph-metrics are known
to have bounded-distortion `1-embedding. Finding such an embedding would also imply that
respective metrics admit a system of walls with strong properties. We intend to investigate 1-
skeletons of some simplicial and cubical complexes, occurring in geometry and geometric group
theory: 2-dimensional systolic and special cube complexes, 2-dimensional folder complexes.

Objectives: Isometric subgraphs of half-cubes; Menger-type results for `1-embedding into
R3; bounded distortion `1-embedding for classes of 1-skeletons of 2-dimensional complexes,
in particular, for planar special cube complexes.

Related themes: S1,S5,A2,A3

Theme S6: Packing and covering with balls, identifying codes, and χ-boundedness. The packing
and covering problems are classical themes in computer science and combinatorics. In the set
covering problem, given a collection F of subsets of a domain X, the task is to find a subcollection
of F of minimum size ρ(F) whose union is X. The set packing problem asks to find a maximum
number ν(F) of pairwise disjoint subsets of F . A problem closely related to set covering is the
hitting set problem. A subset T is a hitting set of F if T ∩S 6= ∅ for any S ∈ F . The minimum
hitting set problem asks to find a hitting set of smallest cardinality τ(F). All these three problems
are NP -hard and difficult to approximate. If X is a metric space and F is the set of its balls of
equal radii, then the minimum covering and the minimum hitting set problems are equivalent,
i.e., ρ(F) = τ(F). The inequality τ(F) ≥ ν(F) holds for any family F and any domain X. Of
particular importance are the families F for which there exists a universal constant c such that
τ(F ′) ≤ cν(F ′) holds for any subfamily F ′ of F (we will say that such families have the bounded
covering-packing property). Establishing the bounded covering-packing property is a notoriously
difficult problem and it is open for many simple particular cases, for instance for axis-parallel
rectangles in R2.

We are interested in classes of graphs for which the set of balls of equal radii R has the
bounded covering-packing property. In [76], we proved that if S is a compact subset of a
geodesic δ-hyperbolic space or graph, then ρR+2δ(S) ≤ νR(S), where ρR+2δ(S) is the covering
number of S with balls of radius R + 2δ and νR(S) is the packing number of S with balls of
radius R. This result is useful if the hyperbolicity is much smaller than the radius R of balls
used in the covering. (In [29] we obtained similar relationships between the sizes of packings
and hitting sets of quasiconvex sets in hyperbolic graphs). More recently, in [30] we proved that
Busemann surfaces satisfy the bounded covering-packing property: namely, if S is a compact
subset of a Busemann surface, then ρ(S) ≤ 19ν(S). In [31] it was shown that planar graphs
of diameter 2R can be covered with a constant number of balls of radius R. This result was
generalized to all graphs on surfaces of a given genus [64]; see also [67] for other generalizations.

It was conjectured in [31] that the class of planar graphs has the bounded covering-packing
property, and this is the main problem in this domain we want to solve: is it true that for any R,
the balls of radius R of any planar graph satisfy the bounded covering-packing property (with a
universal constant not depending of R)? A positive answer to this question can be established by
showing that planar graphs satisfy the weak doubling property: there exists a universal constant
c such that any planar graph G contains a ball of radius 2R which can be covered by c balls of
radius R. Notice also that questions similar to those for planar graphs can be also considered
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for any compact (finite) subset of points of an arbitrary polygon (with holes) endowed with the
geodesic metric. The existing proofs of [31, 64, 67] are strongly related with the notions of VC-
dimension and the Hadwiger-Debrunner (p, q)-property for balls. We would like to understand
and exploit further the relation between VC-dimension, (p, q)-property, and packing/covering in
order to generalize and extend these results to new classes of graphs. Namely, what other classes
of graphs or metric spaces have the bounded covering-packing property, weak doubling property,
bounded VC-dimension or the Hadwiger-Debrunner (p, q)-property?

Similarly to the nice labeling problem from S2, the covering/packing problem with balls can
be viewed as a coloring problem of the complement of the intersection graph of balls and the
question can be restated as the χ-boundedness of the resulting class of graphs (a class G of
graphs is χ-bounded if there exists a constant c such that for any G ∈ G the chromatic number
χ(G) and the clique number ω(G) are related by the inequality χ(G) ≤ c · ω(G)). We hope
that a better understanding of ball coverings of planar graphs can be useful in the coloring
of exact d-powers of graphs and metric spaces (for example, the hyperbolic plane), in which
vertices at distance exactly d must receive distinct colors. For instance, in the case of trees, this
question is deeply related with the coloring of hyperbolic spaces but also with some questions
on the chromatic number of powers of bounded expansion classes of graphs. Very recently, the
paper [66] (including among the coauthors N. Bousquet, a member of this project) presented
a counterexample to the conjecture by van den Heuvel and Naserasr (another member of this
project) that exact odd powers of planar graphs can be colored in a constant number of colors.
It will be interesting to investigate how χ-boundedness of exact d-powers of planar graphs and
of general metric spaces is related to bounded doubling dimension.

The classical three longest path conjecture by T. Gallai asserts that any three longest paths of
a connected graph G have a common point. This is easily true for two longest paths and false for
seven and more longest paths (the question remains open for 3,4,5, and 6 paths). Given three
longest paths P1, P2 and P3, we considered f(P1, P2, P3) = min{d(v, P1) + d(v, P2) + d(v, P3) :
v ∈ V } to be the shortest total distance of a vertex to the paths and defined f̂(n) to be
maximum over all f(P1, P2, P3) and over all graphs on n vertices. The conjecture claims that
f(P1, P2, P3) = 0 for any triplet P1, P2, P3 of longest paths and thus f̂(n) = 0 for all n. In an
ongoing work, we proved that if the conjecture is false and there exits a graph G and longest
paths P1, P2, P3 such f(P1, P2, P3) 6= 0, then we can extend this example with a linear growth
of f̂(n) (hence to prove the conjecture it suffices to show that the function f̂(n) is sublinear).

A set M of vertices of a graph G is a metric basis if for each pair u, v of distinct vertices, there
exists a vertex x of M with d(x, u) 6= d(x, v). The smallest size of a metric basis of G is the metric
dimension of G. We would like to investigate the metric dimension for planar graphs, namely
how the order of the graph could be bounded in terms of its diameter and metric dimension.
For planar graphs of metric dimension 2, it is known that n = O(D2), where D is the diameter
of the graph. This bound is reached by any square grid. There exist planar graphs with metric
dimension k = 3 and order Θ(D3) and for general k it is known that n = O(D4k4) [60]. Hence
the following question is interesting: Do there exist planar graphs with small metric dimension
and order O(D4)? Can the bound n = O(D4k4) be improved?

For an integer ρ ≥ 1, a set S of vertices of a graph G = (V,E) is an ρ-identifying code if (1) S
is a hitting set of the set B := {B(v, ρ) : v ∈ V } of ρ-balls of G and (2) S separates the vertices
of G: B(u, ρ) ∩ S 6= B(v, ρ) ∩ S for all u, v ∈ V . Notice the following surprising link between
the separation condition for identifying codes and the non-clashing condition for representation
maps: viewing B as a concept class of {0, 1}V , if S is an ρ-identifying code for G, then setting
r(B(v, ρ)) := B(v, ρ)∩ S for any v ∈ V , the map r satisfies the non-clashing condition and thus
is a representation map for B. Vice-versa, if r : B → {0, 1}V is a representation map such that
r(B(v, ρ)) ⊂ B(v, ρ), v ∈ V , then the set S :=

⋃
v∈V r(B(v, ρ)) is an ρ-identifying code. This link

merits future investigations and can enrich both problems. Another question about ρ-identifying
codes is the surprising monotonicity conjecture by Moncel [105] for hypercubes and studied
extensively since then: the minimum size γid(Qd) of an ρ-identifying code of a d-hypercube Qd
is monotonically increasing with its dimension: γid(Qd) ≤ γid(Qd+1). On the other hand, for
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ρ = 1 it is known that γid(Qn+2) ≤ 4γid(Qn) and that γid(Qn+1) ≤ (2 + 1
n+1)γid(Qn) [91].

Surprisingly, the following is open: show for ρ = 1 that γid(Qn+1) ≤ 2γid(Qn) (this holds
[62, 124] if Qn has an identifying code with no isolated vertices).

Objectives: Bounded covering-packing and weak doubling properties for balls in planar
graphs; coloring of exact powers of graphs and metric spaces; metric dimension of planar
graphs and ρ-identifying codes in hypercubes, the three longest path conjecture.

Related themes: S3,S5,A2,A3

1.5. Algorithms in Metric Graph Theory.

Theme A1: Algorithmic aspects of hyperbolic graphs. δ-Hyperbolic metric spaces have been
defined by M. Gromov via a simple 4-point condition: for any four points u, v, w, x, the two
larger of the distance sums d(u, v)+d(w, x), d(u,w)+d(v, x), d(u, x)+d(v, w) differ by at most 2δ
(hyperbolicity of graph-metrics and geodesic metric spaces can be characterized in a multitude of
ways: thin and slim geodesic triangles, linear isoperimetric inequality, exponential divergence of
geodesics, etc). Geodesic hyperbolic spaces and infinite hyperbolic graphs play a very important
role in modern metric geometry and geometric group theory: the word problem in hyperbolic
groups in decidable and many graphs and simplicial complexes (curve complex, arc complex,
etc.) arising from the topology of surfaces are hyperbolic. Like the treewidth measures how
close a graph is to a tree from a connectivity point of view, the hyperbolicity measures how
close a graph is to a tree from a metric point of view. In particular, the metric spaces of trees
are 0-hyperbolic. Designing fast and accurate algorithms for hyperbolic graphs is motivated by
numerous empirical results establishing that many real world networks and graphs have small
hyperbolicity. An active line of research consists in using the specific metric properties of δ-
hyperbolic graphs to derive structural and algorithmic results relevant for such real-life graphs
and networks. Many algorithmic results on graphs are typically obtained under structural
conditions like bounded treewidth, bounded genus, or minor-closedness. Thus, one can ask to
what extent for metric problems such conditions can be replaced by hyperbolicity δ?

The participants of this project from different centers already substantially contributed to
this line of research. The distance query problem in δ-hyperbolic graphs has been investigated
in [95]. Simple linear time algorithms for diameter and center problems have been proposed
in [26] and polynomial time algorithms for covering and packing with balls (with an additive
error depending of δ) have been proposed in [76]. Answering on open question from [21], a
game theoretical characterization of δ-hyperbolicity was given in [23] where it is shown that all
graphs in which a cop moving at speed s can catch a robber moving at speed larger than s are
δ-hyperbolic with δ = O(s2). This allows to provide a constant factor approximation of the
hyperbolicity of a graph G (the smallest δ such that G is δ-hyperbolic) in O(n2) time (n is the
number of vertices). Very recently, answering a question by Jonckheere et al. [107], we proved
in [29] that any δ-hyperbolic network admits a core, i.e., a ball of radius O(δ) which intercepts
all shortest paths between at least n2

4 pairs of n arbitrary vertices of G. Such a result explains
the experimental observation of Narayan and Saniee [120] that real-world networks with small
hyperbolicity have a core congestion. In [29], we also extended the results of [76] about covering
and packing with balls to arbitrary quasiconvex sets of hyperbolic graphs.

These results (in particular, those about covering and packing with quasiconvex sets) sug-
gest the existence of a kind of meta-theorem (à la Courcelle) asserting that efficient algorithms
and good characterizations that works for trees have a O(δ)-approximated counterpart for δ-
hyperbolic graphs. Our experience shows that finding the correct formulation of these results
and their proofs requires a deep understanding of the metric properties of δ-hyperbolic spaces.
In this project, we intend to continue this research and obtain this kind of results for multiflow
and multicut problems, k-server problem, hub labeling, distance and routing labeling schemes.

In the k-server problem, an online algorithm ALG controls k mobile agents (servers) located
at the points of a metric spaces (X, d). A sequence of requests σ = r1, r2, . . . , rn ∈ X has to be
served by the agents, i.e. some agent has to move to the point ri. For a sequence of requests σ,
the cost of ALG is the total distance traveled by his agents to serve σ. The k-server conjecture
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asserts that for any metric space (X, d) there exists a k-competitive algorithm (an algorithm
is said to be c-competitive for a problem Π if there is a constant α such that for each instance
σ ∈ Π, ALG(σ) ≤ c · OPT(σ) + α, where OPT(σ) is the cost of an optimal offline algorithm).
There is a (2k−1)-competitive algorithm for any metric space [111] and the conjecture holds for
k = 2. On the other hand, there exists a simple k-competitive algorithm for trees [81] (with a
nice competitiveness analysis). We would like to adapt the algorithm for trees to all δ-hyperbolic
graphs and geodesic metric spaces to obtain a (k +O(δ))-competitive algorithm.

Given a graph G = (V,E), an edge-capacity function c : E → R+ and a set of k pairs
of terminals s1t1, s2t2, . . . , sktk, the multicut problem is to find a subset of edges F ⊆ E of
minimum capacity that intercepts all paths between si and ti for i = 1, . . . , k. This problem
is already NP-hard for trees but, in this case, there is a polynomial 2-approximation algorithm
[94]. An R-multicut is an analog of a multicut in which the set of edges that intercept all
paths between terminal pairs is replaced by a set of balls of radius R that intercept all shortest
paths between terminal pairs. We would like to answer the following non-trivial question: Is it
possible to design a constant factor approximation algorithm for the R-multicut problem when
G is δ-hyperbolic graph and R = O(δ)? We will also consider other multicut-multiflow problems
(for example, the sparsest cut problem) and other optimization problems on δ-hyperbolic graphs
related with distances (for example, the multifacility location problem).

One of the recent advances in practical computation of shortest paths is based on hub labelings
of graphs. A hub labeling of a graph G = (V,E) associates to each vertex v ∈ V a subset
H(v) ⊂ V called the hub of v and the set of distances {d(v, x) : x ∈ H(v)}, such that given any
two vertices u, v ∈ V , there exists x ∈ H(u) ∩H(v) ∩ I(u, v) (recall that I(u, v) is the set of all
shortest paths between u and v). Then d(u, v) can be easily retrieved as d(u, x) + d(x, v). The
goal is to find a hub labeling of small size, say a hub labeling of smallest `1-size

∑
v∈V |H(v)|

or of smallest `∞-size max{|H(v)| : v ∈ V }. Recently, Angelidakis et al. [50] provided a linear
programming analysis of a simple algorithm for hub labeling of trees (which assign labels of size
log n to all vertices) and proved that this algorithm is a factor 2 approximation algorithm for the
L1-size of hubs. We would like to extend this algorithm and its analysis to δ-hyperbolic graphs.
This is more challenging than it seems because of lower bounds of the size of distance labeling
schemes in hyperbolic graphs established by Gavoille and Ly [95].

Objectives: Fast and accurate approximation algorithms for optimization problems with
metric data for δ-hyperbolic graphs; a (k+O(δ))-competitive algorithm for k-server problem;
constant factor algorithms for the R-multicut problem and for the hub labeling of minimal
`1-size.

Related themes: S2,S4,S6,A2

Theme A2: Algorithms for graph classes from MGT. Metric Graph Theory supplies classes of
graphs with interesting metric properties. It is natural to ask various algorithmic questions
about these graphs. The first one is efficient testing if a graph G belongs to a given class
of graphs. This “property testing” was already done for some classes. We would like to in-
vestigate it for various classes of isometric subgraphs of hypercubes, half-cubes, and Johnson
graphs. In relation with efficient testing, we would like to investigate properties and algorith-
mic applications of Breadth First Search (BFS), Lexicographic Breadth First Search (LexBFS),
and Lexicographic Depth First Search (LexDFS). For example, for numerous classes of graphs,
LexBFS provides total orders with useful properties (perfect elimination order for chordal and
interval graphs, domination order for bridged and weakly bridged graphs) and has numerous
applications in efficient testing of graph properties (for example, in the recent papers [82, 113]
they were used, respectively, for designing linear time algorithms for cocomparability graphs and
to recognize Robinsonian dissimilarities). In the project, we intend to use LexBFS to recognize
convex geometries. We noticed that on some classes of graphs, LexBFS and LexDFS orders have
properties close to greedoids. We plan to investigate in details the relationships between convex
geometries and these classes of graphs. Another important question is to design more efficient
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algorithms for classical metric problems like shortest path, rectilinear TSP with constraints, di-
ameter, center, median problems, and other facility location problems for particular (but quite
general) graph classes (for example, diameter, center, and median problems on Helly graphs).

In the distributed setting, it will be very natural to investigate which classes from MGT admit
compact encoding schemes with fast answers to (a) adjacency queries, (b) distance queries and
geodesic routing. Which classes admit encoding schemes with polylogarithmic labels? The size of
the adjacency scheme for G is often related to the arboricity or density of G. We will investigate
these parameters for subgraphs G of Cartesian products of graphs, for subgraphs of half-cubes
and of Johnson graphs. In case of subgraphs of Cartesian products, we expect that in many cases
they are bounded by the maximum of respective parameters of factors and the VC-dimension
of G (upper bounded by log |V (G)|). This will generalize the classical result of Haussler et al.
[103] that for any subgraph G = (V,E) of a hypercube, |E||V | does not exceed the VC-dimension
of the set family defined by V . It would be interesting and important if this inequality can
be extended to subgraphs of half-cubes and of Johnson graphs (for an appropriate definition of
the VC-dimension). We also plan to investigate distance queries and geodesic routing problems
based on hub labeling for such classes of graphs as median graphs and bridged graphs. Another
algorithmic question is which classes of graphs from MGT admit sparse spanners (with O(n) or
O(n log n) edges) and constant distortion or are quasi-isometric to sparse graphs. Also we plan
to investigate the notions (alternative to VC-dimension and doubling dimension) of highway
dimension [48] and skeleton dimension [110], both related to hub labeling schemes. We also
propose to investigate generalizations of hub labeling. One interesting approach concerns h-
hopsets, that is a set of additional (transitive) edges so that any pair of nodes is connected by a
shortest path of at most h hops (i.e., at most h edges). Such structure are particularly interesting
for parallel computing of shortest path trees and for approximating shortest paths [90]. A hub
labeling can be seen as a 2-hopset where the L1-size of the hub labeling corresponds to the
number of edges in the 2-hopset. We will investigate how graph classes from MGT enable better
trade-offs between number of hops h and number of edges in the h-hopset.

An important topic in this theme is the investigation of algorithmic and complexity aspects
of geodesic convexity in graphs and the construction of different types of envelopes relaxing the
classical convex hull. The first question concerns the computation of such convexity parameters
as the hull number, Helly, Radon, and Caratheodory numbers, and their fractional analogs in
classes of graphs (it is known that computing the hull number is NP-hard already for partial
cubes [3]). The geodesic convex hull conv(S) of a subset S of vertices of a graph G can be
constructed in polynomial time, however in many cases the size of conv(S) is much bigger than
the size of S (can be exponential in |S| and close to the size of G). Thus one can ask to construct
subsets of conv(S) containing S, of size polynomial in parameters of S, and satisfying metric
properties of the host space G. In case of subsets S of median graphs (`1-spaces) and in case of
Helly graphs (injective spaces), there are canonical ways to construct smallest median subgraph
med(S) and Helly subgraph helly(S) containing S: med(S) is the median closure of S (called
also the cubulation of S) and helly(S) is the Hellification of S (the discrete counterpart of the
injective hull of S [87, 104]). med(S) and helly(S) are subsets of conv(S) but still may be
exponential in |S|. If S is a subset of {0, 1}X , one can define analogous envelopes with respect
to properties being lopsided or being a partial cube: lop(S) is a smallest lopsided set containing
S and pc(S) is a smallest partial cube containing S (however lop(S) and pc(S) are no longer
canonically defined). One can ask if for any S ⊂ {0, 1}X of VC-dimension d, lop(S) and/or
pc(S) have size polynomial in S and VC-dimension O(d)? (For lopsided sets, this question is
related to the compression conjecture of Littlestone and Warmuth). Instead of VC-dimension
one can ask the same question about the diameter or the TSP-perimeter of S (i.e., the length
of a shortest TSP tour for S). Similar questions can be asked for other host graphs: Johnson
graphs, half-cubes, bridged graphs. In [77] we investigated Pareto envelopes in (Rn, `∞) and
(R3, `1); the Pareto envelope of a set S consists of all points of the space whose distance-vector
to the points of S is not Pareto-dominated. Even if they coincide with injective hulls in the first
case and with median hulls in the second case, Pareto envelopes of subsets S of {0, 1}X , |X| > 3,
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are no longer median. In relation with previous questions, it will be interesting to investigate
the structure and the complexity of Pareto envelopes of subsets of hypercubes.

Our last topic concerns complexity and algorithmic issues about identifying codes and metric
dimension. The identifying codes (ρ = 1) and metric dimension problems were shown to be NP-
complete for interval graphs and permutation graphs [93]. What about more restricted classes of
graphs: unit interval graphs and bipartite permutation graphs? More wide and general question
is What is the impact of hyperbolicity on various identification parameters (like ρ-identifying
codes, locating ρ-dominating sets, or metric dimension)? For graphs with bounded tree-length
(which are hyperbolic) the metric dimension problem is FPT when parametrized by the solution
size [61]. Maybe similar bounds can be derived in terms of hyperbolicity.

Objectives: Fast algorithms for efficient testing (in particular, using BFS, LexBFS or
LDFS); fast algorithms for classical metric problems (shortest path, diameter, center, me-
dian, rectilinear TSP); adjacency schemes and density results based on VC-dimension for
subgraphs of Cartesian products; distance queries and geodesic routing based on hub label-
ing; lopsided hulls, pc-hulls and Pareto envelopes for subsets of hypercubes and other host
graphs; metric dimension and identifying codes for some classes of graphs.

Related themes: S1,S3,S4,S5,S6,A1,A4

Theme A3: Finite metric spaces: approximation and realization. Approximations and low-
distortion embeddings of metric spaces into simpler metric spaces having a nice geometric struc-
ture is a fundamental (and very rich) mathematical question, having numerous algorithmic and
combinatorial applications. Optimal realizations of finite metrics by network-metrics is another
rich source of challenging algorithmic and structural questions with applications.

Let (X, d) be a finite metric space. An edge-weighted graph G = (V,E, l) is called a realization
of (X, d) if X ⊆ V and for any two points x, y ∈ X the equality d(x, y) = dl(x, y) holds, where
dl(x, y) is the shortest-path distance in the graph G weighted by l. We will say that (X, d)
is respectively a tree-metric, an outerplanar-metric, a series-parallel metric, a planar-metric if
(X, d) admit a realization whose support is respectively a tree, an outerplanar graph, a series-
parallel graph, a planar graph, etc. For example, Kn admits a realization as a star with V (Kn)
corresponding to leaves of the star and all edges of length 1

2 (thus Kn belongs to all these classes).
The recognition problem can be formulated as follows: given a class M of metric spaces and an
input space (X, d), does (X, d) belong to M? There are many positive algorithmic results on
this problem: the recognition of ultrametrics, tree-metrics, outerplanar metrics, (Euclidean)
`2-metrics, and `∞-metrics is polynomial. On the other hand, the recognition of `1-metrics is
NP-complete, however the recognition of graphic `1-metrics is polynomial. The first basic (and
intriguing) question is about the algorithmic recognition of series-parallel and planar metrics:
given a finite metric space (X, d), is (X, d) series-parallel or is (X, d) planar?

The second type of questions concerns low-distortion embeddings of graph-metrics. Given a
classM of host metric spaces and an input finite metric space (X, d), one can formulate several
general approximation-optimization problems of the following nature: find a best approximation
of (X, d) with a metric fromM. By a best approximation one can understand the additive or the
multiplicative distortion. Formally, given two metric spaces (X, d) and (Y, d′), a map ϕ : X 7→ Y
is an embedding with multiplicative distortion λ ≥ 1 if d(x, y) ≤ d′(ϕ(x), ϕ(y)) ≤ λ · d(x, y) for
all x, y ∈ X. Given a metric space (X, d) and a class M of host metric spaces, we denote
by λ∗ := λ∗(X,M) the minimum distortion of an embedding of (X, d) into a member of M.
Analogously, ϕ : X 7→ Y is an embedding with additive distortion λ ≥ 0 if d(x, y) − λ ≤
d′(ϕ(x), ϕ(y)) ≤ d(x, y) + λ for all x, y ∈ X. In a similar way, we can define the minimum
additive distortion for embedding of a metric space (X, d) into a classM of host metric spaces.

The paper [53] presents a large (around 100) constant factor approximation (which was im-
proved in [52] to a factor 27) for optimal multiplicative distortion of embedding a graph metric
into a tree metric. In [75], a simple factor 6 algorithm for this problem was provided. The paper
[75] also presents a constant factor algorithm for approximating the optimal distortion of embed-
ding a graph metric into an outerplanar metric. The open questions we would like to consider is
a logical continuation of [75] and can be formulated in the following way: design constant-factor
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or/and polylog-factor approximation algorithms for embedding graph-metrics (finite metrics) into
series-parallel metrics or/and planar metrics with least additive or multiplicative distortion.

A realization G = (V,E, l) of a metric space (X, d) is called an optimal realization if the total
edge length of G is minimum over all realizations of (X, d). Dress [86] showed that optimal
realizations always exist. However, Althöfer [49] proved that finding such an optimal realization
is NP-hard. One of the main algorithmic questions about optimal realizations is: design an ap-
proximation algorithm for constructing optimal realizations of finite metrics and graph-metrics.

Let G = (V,E) be a (possibly weighted) graph and a set of pairs P ∈ V × V , a subgraph
H ⊂ G is called a pairwise distance-preserver for (G,P ) if dH(u, v) = dG(u, v) for all (u, v) ∈ P ,
i.e. all distances in G between pairs in P are preserved in H. The goal is to find a pairwise
distance-preserver of total minimum length. This problem is known to be NP-complete already
when G is the grid graph. In this case, if P is the set of all pairs, then the problem is equivalent
to the minimum Manhattan network problem, which was proven NP-complete in [80]. We want
to characterize polynomial cases of (G,P ) and to find constant factor approximation algorithms
for other NP-complete cases (in [71, 78] we obtained factor 2 and 2.5 algorithms for the classical
minimum Manhattan network problem in the `1-plane and normed plane with polygonal balls).
For example, with P all possible pairs of a subset S of V , for which classes of graphs the problem
can be solved in polynomial time (i.e., for any graph G from the class and any subset S of V (G)?

Objectives: Recognition of series-parallel and planar metrics; approximation algorithms
for embedding graph-metrics into series-parallel and planar metrics; approximation algo-
rithm for constructing optimal realizations and pairwise distance-preservers.

Related themes: S5,S6,A4,
Theme A4: Seriation and classification. As we already mentioned in the introduction, Robinson
dissimilarities are the standard distance model for seriation. A dissimilarity on a set of objects X
is just a map d : X×X → R+∪{0} such that d(x, y) = d(y, x) and d(x, y) = 0 iff x = y (distances
additionally satisfy the triangle condition). A dissimilarity d on X is called Robinsonian if there
exists a total order ≺ on X such that if xi ≺ xj ≺ xk then d(xi, xk) ≥ max{d(xi, xj), d(xi, xk)}.
This corresponds to a total ordering of the lines and columns of the distance matrix such that
the distances are increasing while moving along the lines and the columns. The ultrametrics
(the standard model in phylogenetics) are particular instances of Robinsonian dissimilarities.
Deciding if a dissimilarity d on X is Robinsonian is equivalent to deciding if the hypergraph
of balls B = {B(x, r) : x ∈ X, r ∈ R+} is an interval hypergraph and thus can be tested in
polynomial time. Recently, in [47] we designed an optimal O(n2)-time algorithm to recognize if
d is Robinsonian (|X| = n) based on PQ-trees (subsequently, in [16] we also showed that one
can embed the associated PQ-trees into a distributive lattice). An O(n2 log n) algorithm based
on LexBFS was designed in [113] (other algorithms of the same complexity were known before).
Robinsonian structures have both strong and nice structural properties (they establish links
between distances, graphs, clustering systems and lattices) and interesting applications (seri-
ation, phylogenetic problems, knowledge representation and management, etc). On structural
problems, we will work on metrical characterizations for some classical structures. This metric
approach should lead to new efficient algorithms able to work on larger data sets than usually.
We also intend to apply the tools developed in [47] and [16] to design approximation algorithms
for Robinson fitting, efficient for large data sets. A factor 16 algorithm for the NP-hard problem
of the best additive distortion approximation of a dissimilarity d by a Robinsonian dissimilar-
ity d̂ was proposed in [79]. A similar (and more difficult) problem of the best multiplicative
approximation of a dissimilarity by a Robinsonian dissimilarity is widely open (there are no
known constant factor algorithms for this problem in the much simpler case of ultrametrics). It
would be interesting to investigate if repetitive applications of LexBFS can lead to faster than
O(n2 log n) (i.e., those in [113]) algorithms. Due to the importance of the problem and similarity
to classical sorting, it will be interesting to see if Quicksort can be extended to a randomized
O(n2) algorithm for this recognition problem. It would be also very interesting to obtain a sim-
ple optimal deterministic algorithm for this problem, perhaps based on some extension of graph
search. All these algorithms will be implemented and tested. We intend to publish a library
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where all these methods will be available. Finally, it will be important to extend the existing
efficient recognition algorithms and concepts from classical Robinsonian (binary) dissimilarities
to ternary Robinson dissimilarities in the sense of [133] and to arboreal dissimilarities [69].

Objectives: Approximation algorithms for Robinson fitting, efficient for large data sets;
optimal recognition algorithms based on graph search; average behavior of near-optimal al-
gorithms; extend recognition algorithms and structural properties to ternary Robinson and
arboreal dissimilarities.
Related themes: A2, A3.

1.6. Risk management and methodology. We intend to work on some difficult problems
from MGT and its applications. Succeeding to solve some of them will be a great success for
the project and a reward for us. However, working on this kind of questions represents a certain
level of risk. We are ready to invest the necessary time to get a deep understanding of structures
and properties necessary to have a chance to answer these problems. On the other hand, our
own experience shows that to obtain very good results it is necessary to regularly think and work
hard on difficult questions. Our results from 2016 on the existence of cores in hyperbolic graphs
and a counterexample to Thiagarajan’s conjecture bring some confidence in our forces and in
the feasibility of the project. Several formulated problems have a pronounced combinatorial,
graph-theoretical, algorithmic, combinatorial optimization, data analysis flavor and require an
expertise from these areas of research. The consortium has internationally recognized experts
in all those areas (see the next section and the tables). On some problems we will collaborate
with internationally recognized fellows, some of them are our coauthors.

Even if the project comprises 10 different themes of research and a long list of questions, there
are strong relationships between most of themes. For each of the themes, we already enumerated
the related themes. We outline now some of these links as well as some differences between the
themes. In some themes the object of study is the same but the perspectives and the motivation
are different. For example, S2 is about Thiagarajan’s conjecture for hyperbolic domains while
A1 is about algorithmic problems on hyperbolic graphs. Even if these two objects are close to
each other and the hyperbolicity of median graphs is well understood, the techniques used in
both themes will be very different. S3 is about the existence of representation maps for lopsided
concept classes and the second part of S4 is about COMs, generalizing lopsided sets. Again, the
difference between S3 and S4 is that S3 requires a solution of a concrete combinatorial question
(using all previous known results about lopsided classes), while S4 is about the development
of a more general theory of COMs. Notice also the link between the representation maps and
identifying codes in S3 and S6. Analogously, the local-to-global characterizations developed in
S1 can be useful in dealing with questions about basis graphs in S4 and inspired the local-to-
global characterization of representation maps S3. The themes S5 and A3 are also very close to
each other: the first one is dealing with the existence of low-distortion embeddings (in the case
of planar metrics and `1), while A3 is about the algorithmic computation of such embeddings
(into given host spaces). Notice also that the themes (S2)-(S5) are dealing with similar objects
but interpreted in completely different ways: the events of an event structure are the same as the
hyperplanes of a CAT(0) cube complexes, lopsided sets, or COMs, cuts in the `1-embeddings,
and wall systems in geometric group theory. The vertices of a lopsided class are called concepts
in learning theory, bases in the theory of matroids, topes in the theory of oriented matroids, and
configurations in the theory of event structures. The fact that all such objects lead to partial
cubes show their structural richness. Each of the specific application domain provides various
combinatorial and structural problems which can be treated from a common point of view.

The main questions of themes S5, S6, and A3 are about planar metrics. Understanding the
structure and the intrinsic difficulties of planar metrics is one goal of our project (one can say
that planar metrics are still waiting for their Kuratowski). In some proofs of results of theme S4
the pc-minors (partial cube minors) are used while for low-distortion embeddings into trees and
outerplanar graphs (theme A3) metric minors are used. This shows that an important work must
be done in developing the concepts of metric minors in different contexts, and the consortium
seems to have the required expertise. Notice also that the themes and the main questions are
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concentrated around a few core objects and subjects: local-to-global, median and CAT(0) cube
complexes, lopsided sets, VC-dimension, and COMs, basis graphs, low distortion `1-embeddings,
hitting set and packing with balls, planar metrics, hyperbolic graphs, Robinson dissimilarities.

Concerning the methodology, we would like to mention that several difficult questions of the
project are about objects which have numerous characterizations and a rich structure: CAT(0)
cube complexes, lopsided sets, basis graphs of matroids, tope graphs of COMs, hyperbolic graphs.
Our positive experience with hyperbolic graphs and CAT(0) cube complexes as domains of event
structures shows that depending on the problem to solve, the choice of an appropriate definition
of the respective object is crucial (in addition to all other additional work related to the problem).
We hope that a similar scheme will work for dealing with the problems of the project about the
same objects or about lopsided classes and basis graphs. On the other hand, there is no such
rich structure for planar metrics, and finding it will be our challenge.

2. Project organisation and means implemented

2.1. Coordinator. V. Chepoi (CV in the appendix). VC is professor in CS at Aix-Marseille
U. since 1998. He was awarded an AvHumboldt Fellowship in 1994. VC is the head of ACRO
team of LIF. Metric Graph Theory is his main (and probably single) research topic, on which
he regularly and intensively works since 1981. He obtained in MGT several foundational results
(some mentioned above) and advised 5 PhD theses. He published about 112 journal publications
and 22 proceedings of international conferences. Main results have been published in premium
and leading journals like JTCB, Algorithmica, J. Algorithms, SIAM J. Discr. Math., SIAM J.
Comput., Adv. Math., Adv. Appl. Math., Trans. AMS, Discr. Comput. Geom., Europ. J.
Combin., Cybernetics, SODA, SoCG, APPROX-RANDOM. He formulated the most part of the
questions in the project (some based on his current work) and he plans to devote to the project
the most time of his research. He will be involved in all themes of the project.

2.2. Consortium. The consortium consists of 24 fellows, comprising experts in metric graph
theory, algorithmics of distances, approximation algorithms, combinatorial optimization, graph
theory and graph algorithms, distributed algorithms, matroids and oriented matroids, and seri-
ation. 12 participants are from LIF, Aix-Marseille U., 4 participants are from IRIF, U. Paris-
Diderot, and 8 other participants are from six French Universities: two from Bordeaux (LABRI),
two from Grenoble (G-SCOP), and four from Paris (LAMSADE, LIPN), Clermond-Ferrand
(LIMOS), and Montpellier (LIRMM). Due to this geographical dispersion, still having two cen-
ters and a few outliers, we decided to have two partners, one at LIF (Marseille) and one at
IRIF (Paris), and to assign all the participants to those two centers via the nearest neighbor
principle. Victor Chepoi, the scientific coordinator of the project, will coordinate the pole in
Marseille and Pierre Charbit (CV in the appendix) will coordinate the pole in Paris. Each of the
two partners will ensure that the participants from outside affiliated with them (further named
“isolated participants”) will be fully engaged in the themes on which they are assigned in the
project and that the partner will cover the travel and related expenses of isolated participants
in the limits of their involvement in the project. Here is the full list of participants:

LIF (Marseille): F. Brucker (FB, 40%, Pr), J. Chalopin (JC, 30%, CR1), V. Chepoi (VC,
75%, Pr), B. Couëtoux (BC, 50%, MdC), B. Estellon (BE, 40%, MdC), K. Knauer (KK, 40%,
MdC), A. Labourel (AL, 25%, MdC), K. Nouioua (KN, 50%, MdC), G. Naves (GN, 50%, MdC),
P. Prea (PP, 60%, MdC), P. Valicov (PV, 40%, MdC), Y. Vaxès (YV, 50%, Pr).

IRIF (Paris): P. Charbit (PC, 40%, MdC), M. Habib (MH, 30%, Pr), R. Naserasr (RN, 30%,
CR1), L. Viennot (LV, 30%, DR).

Other centers: M. Bonamy (MB, 30%, CR2) and C. Gavoille (CG, 20%, Pr), both LABRI;
L. Beaudou (LB, 30%, MdC, LIMOS), N. Bousquet (NB, 30%, CR CNRS, G-SCOP) and N.
Catusse (NC, 30%, MdC, G-SCOP), D. Cornaz (MC, 30%, MdC, LAMSADE), E. Gioan (EG,
40%, CR1, LIRMM), R. Grappe (RG, 40%, MdC, LIPN).

Most of participants (this concerns almost all participants from Marseille) previously did
research in one or both main subjects of the project (some of them, NC, BE, KN, LB, VC
completed their PHD on these topics), as well as on graph algorithms, combinatorics and graph
theory. FB, PP are experts in data analysis and classification, VC, BC, NC, BE, KN, YV are
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also experts in approximation algorithms, RG, DC, GN in combinatorial optimization, MB, RN,
PV in graph colorings, CG, AL in distributed representations of graphs, while JC, VC, EG, KK
in matroids and oriented matroids. We plan to have a PhD fellowship at LIF on the theme A1
“Algorithmic aspects of hyperbolic graphs” and two postdocs, one at LIF on “Structure in metric
graph theory” and the second at IRIF on “Algorithms in metric graph theory”. We asked L.
Viennot (DR2 Inria) to join the consortium because of his unique knowledge on algorithms and
protocols for networks and his theoretical and practical work on hub labeling in road networks.

VC will coordinate themes S1 and S3, JC will coordinate S2. The theme S4 will be coordinated
by EG and KK, the first on basis graphs aspects and Tutte polynomial and the second on oriented
matroids and COMS. Analogously, the theme S5 will be co-directed by NB and BE. LB will
coordinate the theme S6. The theme A1 will be coordinated by YV, while the theme A2 will
be coordinated by CG and MH. The themes A3 and A4 will be coordinated by GN and PP,
respectively. The short CVs of coodinators of all themes are presented in the appendix.

In the next table we present the involvement of members quantified in months, the list of
themes on which they will be involved, and the distribution of isolated participants among the
two partners (AMU stands for Aix-Marseille University and PDU for Paris Diderot University).

Partner Affiliation Name First Name Position Involvement Themes

IRIF Cl.-Ferrand U., LIMOS Beaudou Laurent MdC 15 S5,A2

IRIF CNRS, LABRI Bonamy Marthe MdC 15 S4,S6,A2

LIF CNRS, G-SCOP Bousquet Nicolas CR CNRS 15 S6,A1,A2,A3

LIF ECM, LIF Brucker Francois Professor 20 A4

LIF Grenoble U., G-SCOP Catusse Nicolas MdC 15 S6,A2,A3

LIF CNRS, LIF Chalopin Jéremie CR CNRS 15 S1-S5, A1,A2

IRIF PDU, IRIF Charbit Pierre MdC 20 S6,A2

LIF AMU, LIF Chepoi Victor Professor 36 Coordinator

IRIF Dauphine U., LAMSADE Cornaz Deniz MdC 15 A2,A3

LIF AMU, LIF Couetoux Basile MdC 24 S4, S6, A1,A2,A3

LIF AMU, LIF Estellon Bertrard MdC 20 S6,A1,A2

IRIF Bordeaux U., LABRI Gavoille Cyril Profesor 10 S6,A1,A2

LIF CNRS, LIRMM Gioan Emeric CR CNRS 20 S2,S4

IRIF Paris-Nord U., LIPN Grappe Roland MdC 20 S5,A2,A3

IRIF PDU, IRIF Habib Michel Professor 15 A1,A2,A4

LIF AMU, LIF Labourel Arnaud MdC 12 A1,A2

LIF AMU, LIF Knauer Kolja MdC 20 S4,A2

LIF AMU, LIF Nouioua Karim MdC 24 S6, A2,A3

IRIF CNRS, IRIF Naserasr Reza CR CNRS 12 S6,A2

LIF AMU, LIF Naves Guyslain MdC 24 S5,S6,A1,A2,A3

LIF AMU, LIF Prea Pascal MdC 30 A4

LIF AMU, LIF Valicov Petru MdC 20 S6,A2

LIF AMU, LIF Vaxès Yann Professor 24 S5,S6,A1,A2,A3

IRIF INRIA, IRIF Viennot Laurent DR INRIA 15 S5,A1,A2

LIF AMU, LIF XXX XXX PhD Student 36 A1,A2

LIF AMU, LIF XXX XXX Postdoc 12 S1-S6

IRIF PDU, IRIF XXX XXX Postdoc 12 A2-A4

2.3. Justification of requested resources. The project duration is 48 months. Including the
PhD and the two Postdocs funded by the project, we obtain about 500 person.months for the 4
years of the project, which corresponds to more that 10 full-time researchers per year. We will
use this number to evaluate further costs.

Personnel. For the realization of the project, we would like to require one PhD student, two
post-doctoral students, and several master students.
PhD student: The aim of the project is a perfect fit for a PhD thesis in theoretical computer
science. As specified above, the PhD student will be involved in the themes A1 and A2, on a
subject “Algorithmic aspects of hyperbolic graphs”. The PhD thesis will be performed at LIF.
We plan to hire a PhD student quickly after the beginning of the project.
Estimated cost: 91 Ke.
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Post-docs: We would like to have two post-doctoral researchers, one at LIF on “Structure in
metric graph theory” (on one of the themes S4, S5, or S6) and the second one at IRIF on
“Algorithms in metric graph theory” (at the theme A2). Each of the post-docs will be hired for
the second or third year of the project.
Estimated cost: 54, 5 + 56, 1 Ke=110,6Ke.
Master students: Several questions in the project are easy to understand and may attract under-
graduate or graduate students as the first research subject. We would like to require 8 interships
for master students, for 4 months each, 4 interships for each partner.
Estimated cost: 8× 2, 25Ke=18 Ke.
Travel expenses. As for any fundamental research project, it is very important to have national
and international collaborations. Therefore we need fundings for our visits and for inviting
our coauthors. For the dissemination of our research results, it is important to participate in
international conferences and workshops (which are also standards of Computer Science). For
a better collaboration and a successful start, we plan to have three meetings of the participants
of this project (which may be attended by other researchers).

Considering that the project covers one international mission or two national missions per
researcher and taking into account PhD and pos-doctoral students, we require 97 Ke for travel
expenses, which will be distributed evenly between the two partners. For the three meetings of
the participants we will need 27 Ke; this amount will be affected to each partner “au prorata”.
We would like to require 18 Ke for 6 months for visiting fellows (3 Keper month).
Estimated cost: 97 Ke+27 Ke+18 Ke=142 Ke.
Equipment. We will need personal computers for a part of the members of the project. We
evaluate the cost of a laptop to 2000Ke and we require a total of 14 Ke.
Estimated cost: 14 Ke.
Conference organization. Continuing the long tradition of conferences on discrete metric
spaces, we would like to organize one at CIRM, Luminy in 2020 or 2021.
Estimated cost: 5 Ke.

The distribution of this budget among the two partners (taking into account the number of
participants at each partner) is as follows:

PhD PostDoc Travel Equip. LocalMeet. Visitors Interships Conf. EnvTax
LIF 91 Ke 54,5 Ke 64 Ke 8 Ke 18 Ke 9 Ke 9 Ke 6 Ke 21 Ke
IRIF 0 Ke 56,1 Ke 33 Ke 6 Ke 9 Ke 9 Ke 9 Ke 0 Ke 9,6 Ke

3. Impact and benefits of the project

3.1. Scientific, economic, social or cultural impact. Metric spaces were introduced a cen-
tury ago and remain a subject of active research. The concepts of geodesic space, CAT(0)
space, delta-hyperbolicity, quasi-isometry, injective hull play central roles in geometry and ge-
ometry of groups. Since the 50s, graphs endowed with metrics found an increasing number
of applications. Graphs as metric objects occur in the investigation of groups, matroids, in-
cidence geometry, etc. Many classical algorithmic problems concern distances: shortest path,
center and diameter, Voronoi diagrams, TSP, clustering, etc. Algorithmic and combinatorial
problems related to distances also occur in data analysis. Low-distortion embeddings into `1
(Bourgain’s theorem and applications by Linial et al.) and the dimension reduction lemma were
the founding tools of so-called metric methods, used in designing approximation algorithms.
Other important algorithmic graph problems related to distances concern the construction of
sparse subgraphs approximating inter-node distances and the converse, augmentation problems
with distance constraints. In the distributed setting, an important problem is that of designing
compact data structures allowing very fast computation of inter-node distances or routing along
shortest or almost shortest paths. Finally, hyperbolic graphs introduced by Gromov in geomet-
ric group theory becomes a source of applications in network analysis, motivated by empirical
works showing that a number of data networks, including Internet application networks, web
networks, collaboration networks, social networks, and others, have small hyperbolicity.
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Besides mathematics and CS, applications of structures related to distances can be found in
archeology, computational biology, statistics, data analysis, etc. The problem of characterizing
isometric subgraphs of hypercubes has its origin in communication theory and linguistics. In
the search for a method for chronologically ordering archaeological deposits, the archeologist
Robinson introduced in 1951 a distance measure which now bears his name and is the standard
distance model for seriation. To take into account the recombination effect in genetic data, the
mathematicians Bandelt and Dress developed in 1991 the theory of canonical decompositions of
finite metric spaces. One important step in this method is building a median network that con-
tains all Steiner (most parsimonious) trees. Median graphs occurring there constitute a central
notion in MGT. Together with their algebraic and geometric counterparts, they have many nice
properties and numerous characterizations. These structures have been investigated in several
contexts independently for more than half a century. What is surprising is that they coin-
cide with objects from completely different domains: CAT(0) cube complexes from geometric
group theory (pure mathematics) and domains of event structures from concurrency (theoreti-
cal computer science), and that these bijections are essential in solving open problems on event
structures and concurrent automata. Lopsided sets investigated in MGT and generalizing me-
dian structures have recently found applications in computational learning theory, in designing
compression schemes for concept classes. Lopsided sets are also particular COMs (complexes of
oriented matroids), related to structures investigated in discrete geometry and combinatorics.

This shows that MGT is a research domain common to mathematics and CS, with strong and
deep connections to many applied areas and domains of fundamental research. Our research
project concerns all previously mentioned themes and applications of metric spaces and graphs
as metric objects. In view of the transversal nature of metric spaces and their applications, we
believe that our research and results on this project will have the same level of impact.

3.2. Describe how the results address an ANR 2017 Work Programme challenge.
We believe that our project fits best into DEFI 7, devoted to CS, because: (i) all participants
are affiliated to CS laboratories, (ii) our research subjects are directly connected to topics tradi-
tionally developed in CS: algorithms, combinatorics, graph theory, combinatorial optimization,
concurrency, computational learning theory, data analysis.

3.3. Dissemination strategy. Continuing the long tradition of conferences on discrete metric
spaces, we would like to organize one at CIRM, Luminy. We will also organize several meetings
of the participants, which may be attended by other researchers. The main methods of dissem-
ination of our results remain: (i) publishing them in major CS and mathematical journals and
CS conferences, (ii) presenting them as invited or contributed speakers at various high-quality
mathematical conferences and workshops, (iii) giving lectures and seminars at universities, in
France and worldwide. The fellowships for Master students as well as the PhD and postdocs is
yet another way of spreading the results.

3.4. Involvement in other projects. We indicate here the recent projects in which the mem-
bers of our consortium are or have been involved:

Years Coordinator ANR Project Name Person.Month

2006–2010 G. Cornuejols OPTICOMB ANR-06-BLAN-0375
V. Chepoi, Y. Vaxès,
P. Préa, K. Nouioua

24 each

2011–2014 J. Ramı́rez Alfonśın TEOMATRO ANR-10-BLAN 0207 V. Chepoi, E. Gioan 24 each

2011–2015 C. Druţu GGAA ANR-10-BLAN-0116 V. Chepoi 24

Y. Vaxès 12

2013–2017 J. Chalopin MACARON ANR JCJC J. Chalopin 36

A. Labourel 28

2015–2018 S. Das/M. Mihalak ANCOR ANR/SNF J. Chalopin 9

A. Labourel 14
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