On Two Thiagarajan's Conjectures

Jérémie Chalopin Victor Chepoi

LIS, CNRS & Aix-Marseille Université

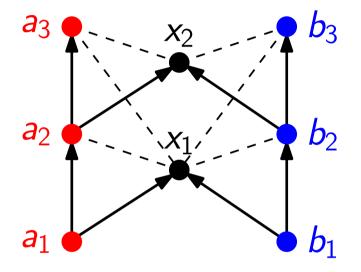
ANR Distancia - 29/03/2019

(Prime) Event Structures

An event structure is a triple $\mathcal{E} = (E, \leq, \#)$ where

- E is a set of events
- \blacktriangleright \leq is a partial order on *E*
- \blacktriangleright # is a (binary) conflict relation on E
- ▶ $\downarrow e := \{e' \in E : e' \le e\}$ is finite for any $e \in E$

►
$$e # e'$$
 and $e' \le e'' \implies e # e''$

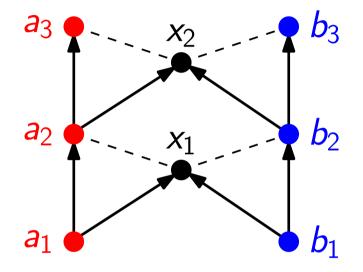


(Prime) Event Structures

An event structure is a triple $\mathcal{E} = (E, \leq, \#)$ where

- E is a set of events
- \blacktriangleright \leq is a partial order on *E*
- \blacktriangleright # is a (binary) conflict relation on E
- ► $\downarrow e := \{e' \in E : e' \le e\}$ is finite for any $e \in E$

►
$$e # e'$$
 and $e' \le e'' \implies e # e''$

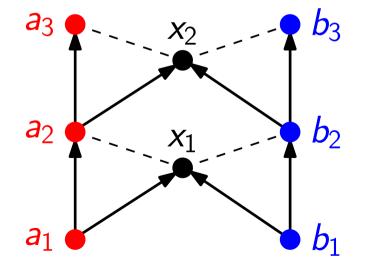


- e_1 and e_2 are in minimal conflict, $e_1 \#_{\mu} e_2$, if there is no event $e'_1 \le e_1$ such that $e'_1 \# e_2$ (and vice versa)
- ► e_1 and e_2 are concurrent, $e_1 || e_2$, if they are not comparable for \leq and not in conflict

Configurations and Domains

A finite subset $c \subseteq E$ is a configuration if

- ► *c* is downward-closed: $e \in c$ and $e' \leq e \implies e' \in c$
- ► *c* is conflict-free: $e, e' \in c \implies (e, e') \notin \#$



- $\{a_1, a_2, b_1\}$ is a configuration
- \blacktriangleright { a_1 , b_1 , x_1 } is a configuration
- \blacktriangleright { a_1 , a_2 , b_2 } is not a configuration
- \blacktriangleright { a_1 , a_2 , b_1 , x_1 } is not a configuration

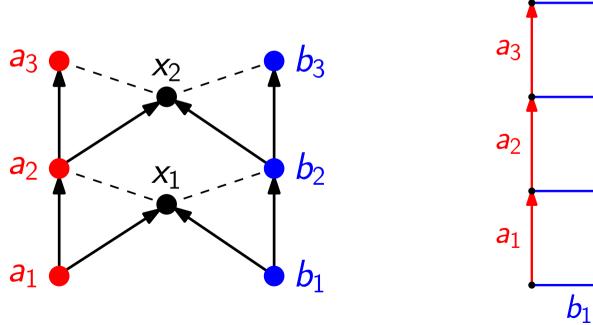
Configurations and Domains

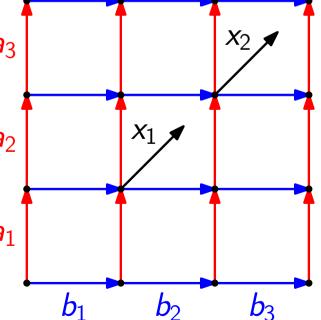
A finite subset $c \subseteq E$ is a configuration if

- ► *c* is downward-closed: $e \in c$ and $e' \leq e \implies e' \in c$
- ► *c* is conflict-free: $e, e' \in c \implies (e, e') \notin \#$

The domain $D(\mathcal{E})$ is a directed graph where

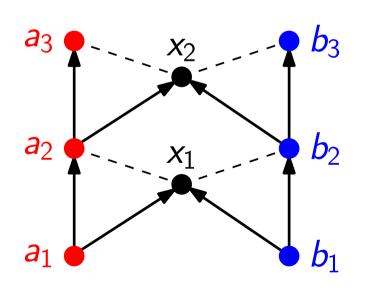
- ▶ the vertices of $D(\mathcal{E})$ are the configurations of \mathcal{E}
- ► $c \rightarrow c'$ if $c' = c \cup \{e\}$ for some event $e \notin c$

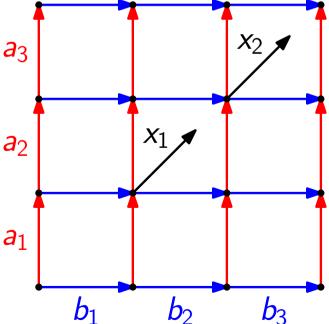




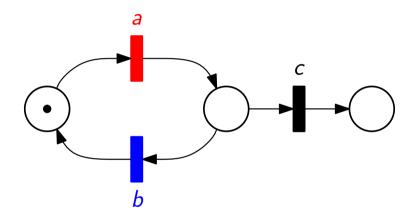
Labeled Event Structures

- A labeled event structure (\mathcal{E}, λ) is an event structure \mathcal{E} with a labeling $\lambda : E \to \Sigma$ (where Σ is a finite alphabet)
- ► λ is a nice labeling if $\lambda(e) \neq \lambda(e')$ when $e \parallel e'$ or $e \#_{\mu} e'$
- Equivalently, λ is a coloring of the edges of $D(\mathcal{E})$
 - Determinism: two edges with the same origin have distinct colors
 - Concurrency: two opposite edges of a square have the same color



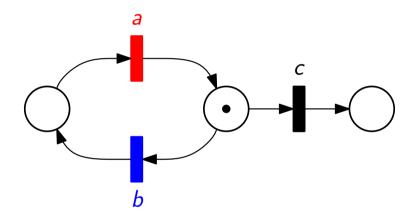


To any finite 1-safe Petri Net *N*, one can associate an event structure \mathcal{E}_N with a nice labeling λ_N



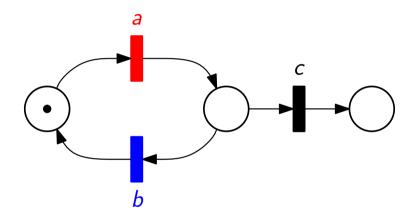
- ► *S*: places
- Σ: transitions
- ► $F \subseteq (S \times \Sigma) \cup (\Sigma \times S)$: flow relation
- ▶ $m_0 \subseteq S$: initial marking

To any finite 1-safe Petri Net *N*, one can associate an event structure \mathcal{E}_N with a nice labeling λ_N



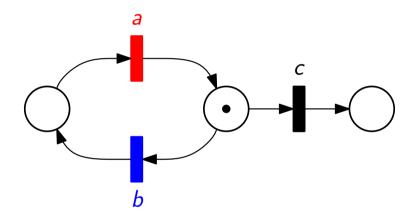
- ► S: places
- Σ: transitions
- ► $F \subseteq (S \times \Sigma) \cup (\Sigma \times S)$: flow relation
- ▶ $m_0 \subseteq S$: initial marking

To any finite 1-safe Petri Net *N*, one can associate an event structure \mathcal{E}_N with a nice labeling λ_N



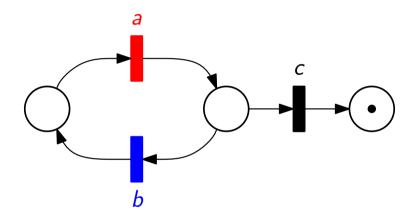
- ► *S*: places
- Σ: transitions
- ► $F \subseteq (S \times \Sigma) \cup (\Sigma \times S)$: flow relation
- ▶ $m_0 \subseteq S$: initial marking

To any finite 1-safe Petri Net *N*, one can associate an event structure \mathcal{E}_N with a nice labeling λ_N



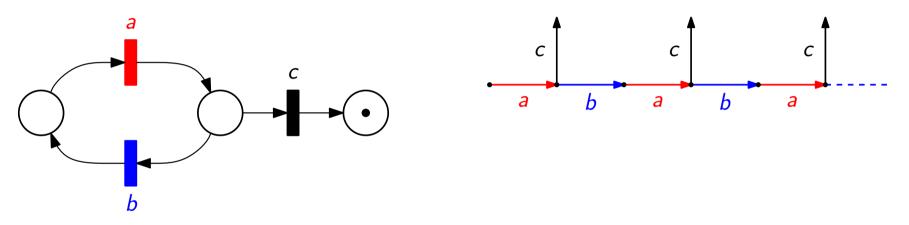
- ► S: places
- Σ: transitions
- ► $F \subseteq (S \times \Sigma) \cup (\Sigma \times S)$: flow relation
- ▶ $m_0 \subseteq S$: initial marking

To any finite 1-safe Petri Net *N*, one can associate an event structure \mathcal{E}_N with a nice labeling λ_N



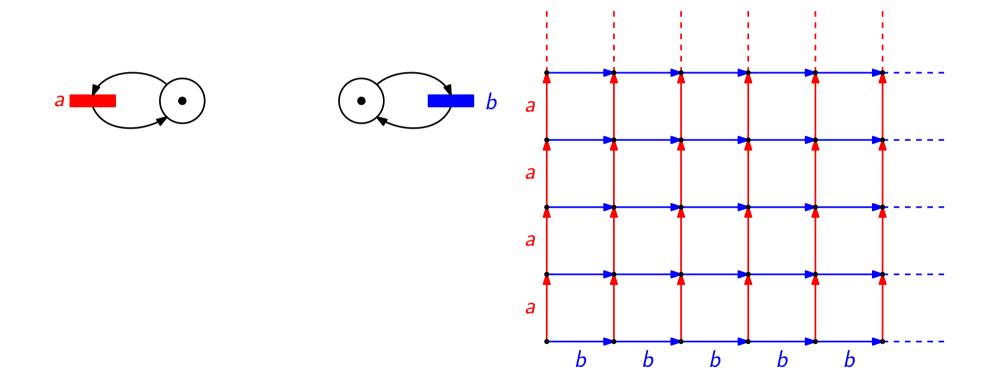
- ► S: places
- Σ: transitions
- ► $F \subseteq (S \times \Sigma) \cup (\Sigma \times S)$: flow relation
- ▶ $m_0 \subseteq S$: initial marking

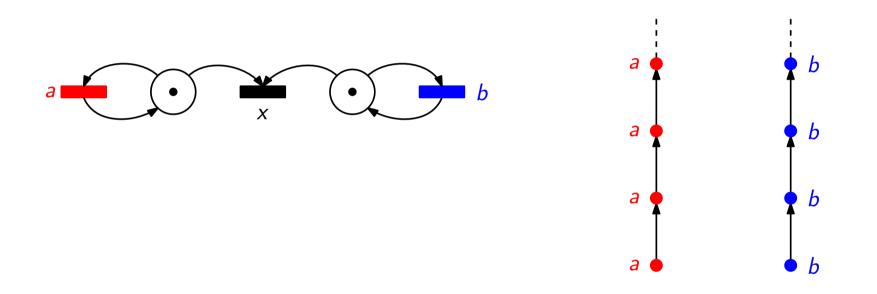
To any finite 1-safe Petri Net *N*, one can associate an event structure \mathcal{E}_N with a nice labeling λ_N

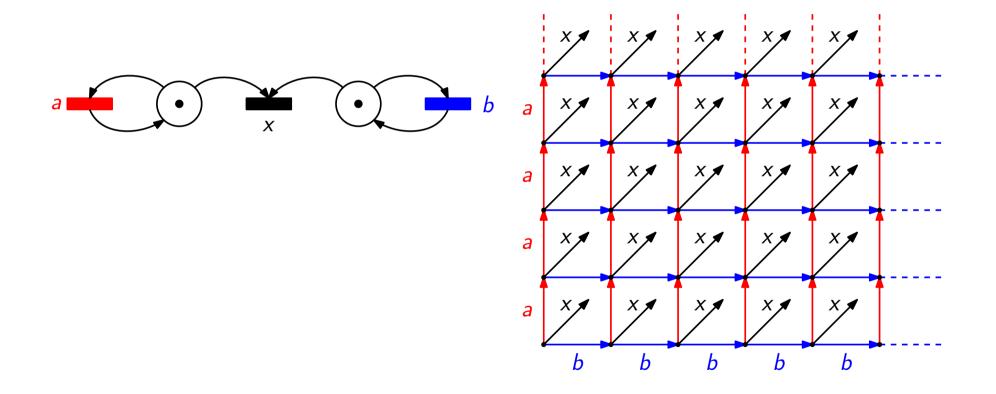


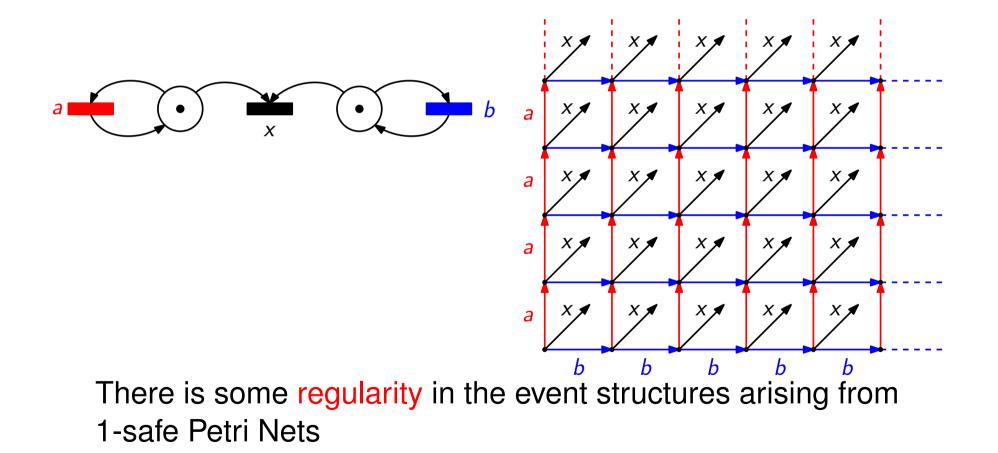
- ► S: places
- Σ: transitions
- ► $F \subseteq (S \times \Sigma) \cup (\Sigma \times S)$: flow relation
- ▶ $m_0 \subseteq S$: initial marking





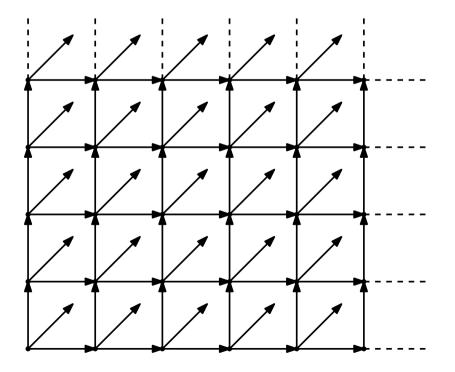






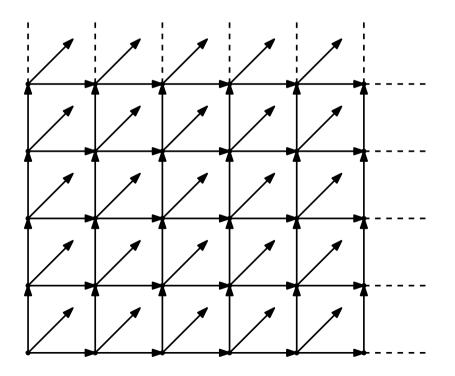
Regular Event Structures

- ► In $D(\mathcal{E})$, the future of a configuration *c* is the subgraph induced by the configurations reachable from *c* in $D(\mathcal{E})$
- Two configurations c, c' are equivalent, cR_Ec', if they have isomorphic futures



Regular Event Structures

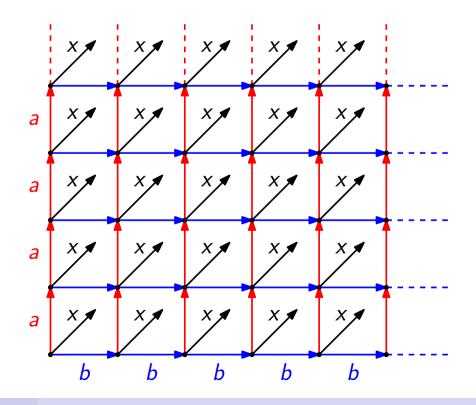
- ► In $D(\mathcal{E})$, the future of a configuration *c* is the subgraph induced by the configurations reachable from *c* in $D(\mathcal{E})$
- Two configurations c, c' are equivalent, cR_Ec', if they have isomorphic futures
- A event structure \mathcal{E} is regular if $D(\mathcal{E})$ has a finite degree and $R_{\mathcal{E}}$ has a finite number of equivalence classes



Regular Labeled Event Structures

If (\mathcal{E}, λ) is a labeled event structure

- Two configurations c, c' are equivalent, cR_Ec', if they have isomorphic labeled futures
- (\mathcal{E}, λ) is regular if λ is a nice labeling and $R_{\mathcal{E}}$ has a finite number of equivalence classes
- We say that λ is a regular nice labeling of \mathcal{E}



Any finite 1-safe Petri net gives a regular labeled event structure (and some extra properties)

Theorem

[Thiagarajan '96 (+ Morin '05)]

Any regular labeled event structure (\mathcal{E}, λ) is isomorphic to the event structure arising from a 1-safe Petri Net

Thiagarajan's regularity conjecture '96

Any regular event structure \mathcal{E} is isomorphic to the event structure arising from a 1-safe Petri Net

- True when \mathcal{E} is conflict-free [Nielsen, Thiagarajan '02]
- True when the domain of *E* is context-free [Badouel, Darondeau, Raoult '99]

Any finite 1-safe Petri net gives a regular labeled event structure (and some extra properties)

Theorem

[Thiagarajan '96 (+ Morin '05)]

Any regular labeled event structure (\mathcal{E}, λ) is isomorphic to the event structure arising from a 1-safe Petri Net

Thiagarajan's regularity conjecture '96

Any regular event structure \mathcal{E} is isomorphic to the event structure arising from a 1-safe Petri Net

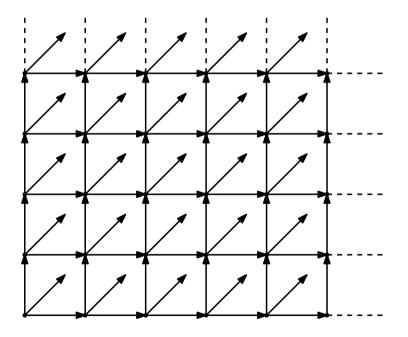
An equivalent condition

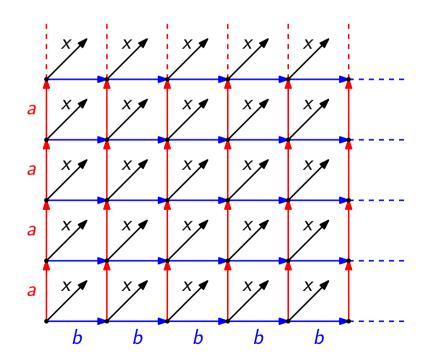
Any regular event structure \mathcal{E} admits a regular nice labeling

The Problem

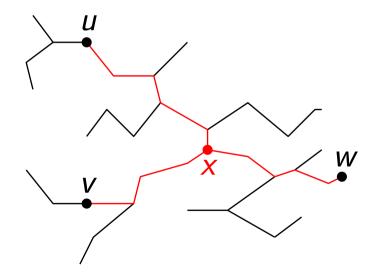
Our Question

Given a regular event structure \mathcal{E} , can we always find a regular nice labeling of \mathcal{E} ?

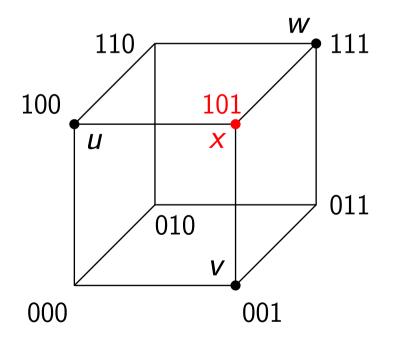




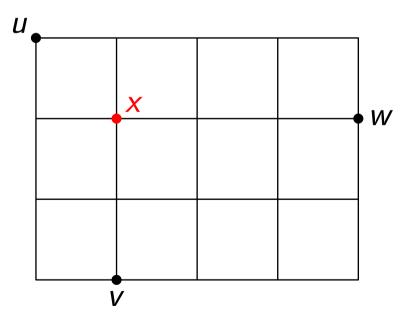
Definition



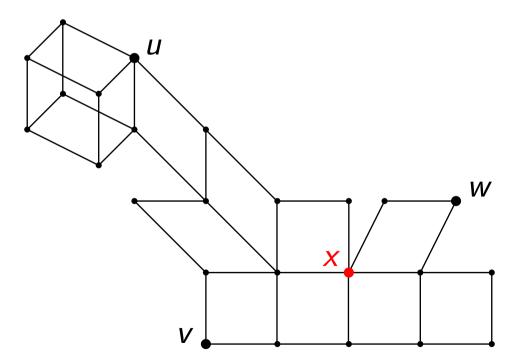
Definition



Definition



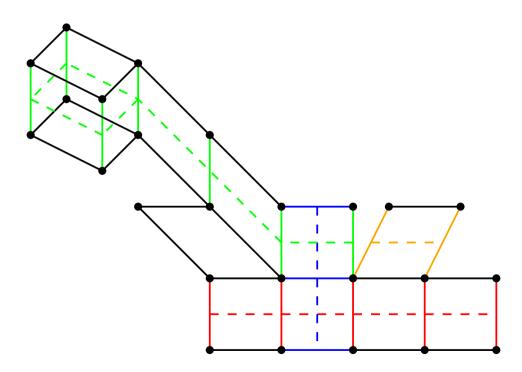
Definition



Hyperplanes [Sageev]

In a median graph G, the Djoković-Winkler relation Θ is defined as follows:

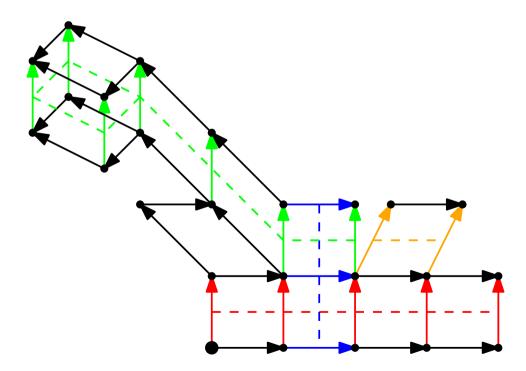
- \triangleright $e_1 \Theta_1 e_2$ if e_1 and e_2 are two two opposite edges of a square
- $\blacktriangleright \ \Theta = \Theta_1^*$
- > an hyperplane of G is an equivalence class of Θ



Median Graphs and Event Structures

[Barthélémy and Constantin '93]

- \triangleright $D(\mathcal{E})$ is a median graph (forgetting the orientation)
- Any pointed median graph is the domain of an event structure

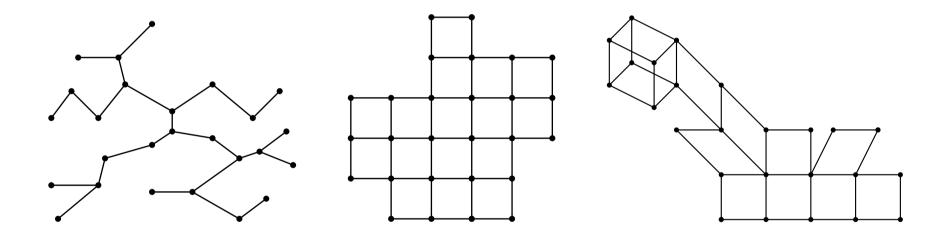


Theorem

CAT(0) cube complexes

A cube complex is a cell complex where each cell is a cube and when two cubes intersect, they intersect on a common face.

The 1-skeleton of X is the underlying graph (V(X), E(X))

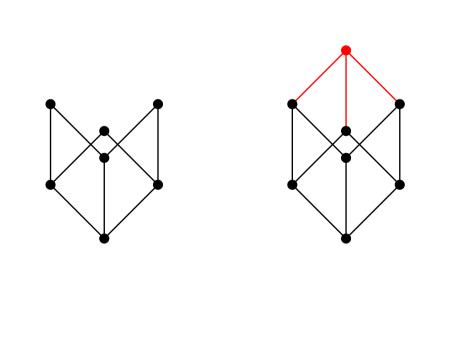


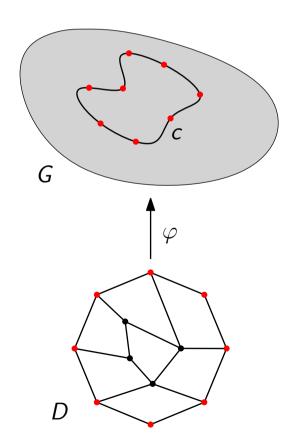
CAT(0) cube complexes

A cube complex is a cell complex where each cell is a cube and when two cubes intersect, they intersect on a common face.

A cube complex X is CAT(0) if

- X is nonpositively curved (NPC) [Gromov]
- X is simply connected





CAT(0) cube complexes

A cube complex is a cell complex where each cell is a cube and when two cubes intersect, they intersect on a common face.

A cube complex X is CAT(0) if

- X is nonpositively curved (NPC) [Gromov]
- X is simply connected

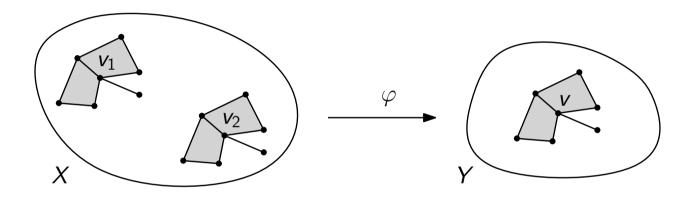
Theorem

[Chepoi '00]

Median graphs are exactly the 1-skeletons of CAT(0) cube complexes

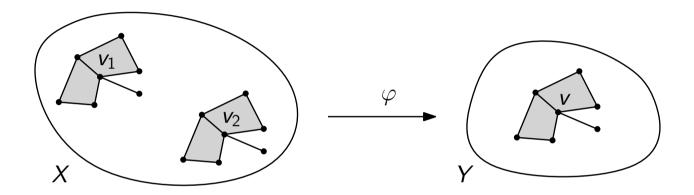
Covers of cube complexes

A cube complex X is a cover of the cube complex Y if there is a simplicial map $\varphi : V(X) \rightarrow V(Y)$ that is locally bijective



Covers of cube complexes

A cube complex X is a cover of the cube complex Y if there is a simplicial map $\varphi : V(X) \rightarrow V(Y)$ that is locally bijective



Theorem (from Topology)

Any complex X has a universal cover X such that if Y is a cover of X then X is a cover of Y

• X is simply connected if and only if $\widetilde{X} = X$

Constructing Event Structures from NPC complexes

Recall that a cube complex is Non Positively Curved (NPC) if it satisfies Gromov's cube condition

- Starting from a finite NPC cube complex X, its universal cover \tilde{X} is a CAT(0) cube complex
- We have a finite number of equivalence classes of vertices in \widetilde{X} up to isomorphism

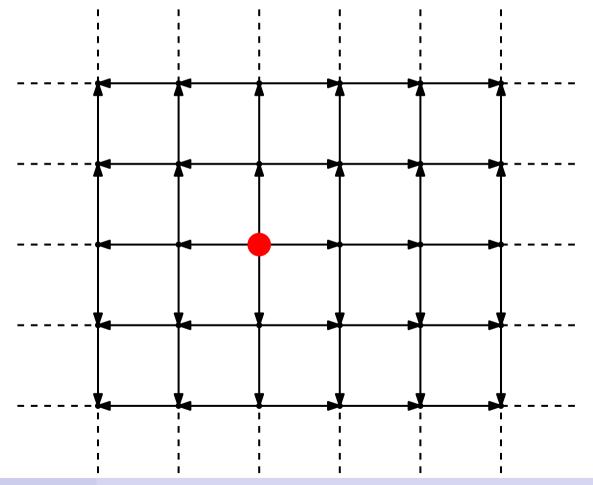
Problem

We need to have some orientations on the edges to get the domain of an event structure

Constructing Event Structures from NPC complexes

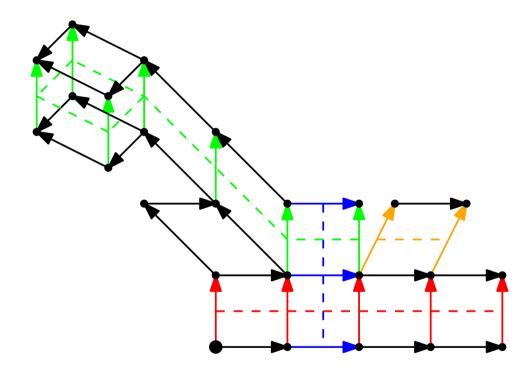
Problem

We need to have some orientations on the edges to get the domain of an event structure



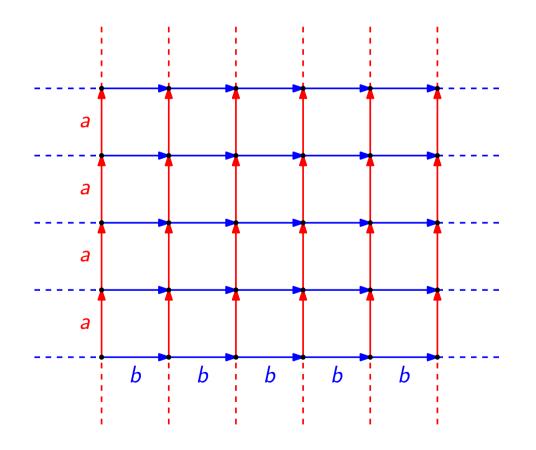
Directed NPC complexes

A directed NPC complex is a complex such that each edge is directed in such a way that two opposite edges of a square have the same direction



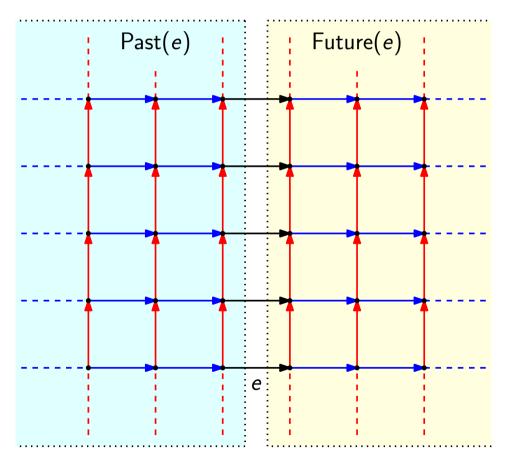
From Directed NPC complexes to Event Structures

- Starting from a finite directed NPC complex X, we construct its universal cover \widetilde{X}
- We have a finite number of classes of futures
- But vertices can have an infinite past ...



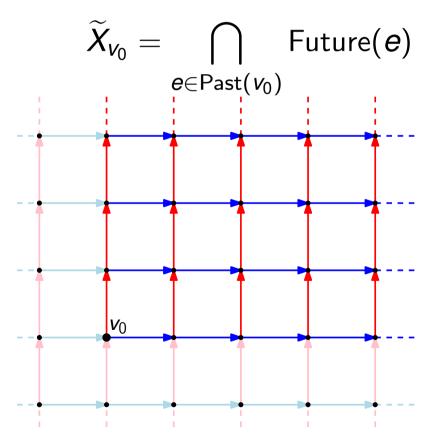
Cutting along Hyperplanes

- In \widetilde{X} , edges belonging to the same hyperplane have the same orientation
- In a CAT(0) cube complex, hyperplanes are separators
 - For each hyperplane e, we define Past(e) and Future(e)



Cutting along Hyperplanes

- In \widetilde{X} , edges belonging to the same hyperplane have the same orientation
- In a CAT(0) cube complex, hyperplanes are separators
- ▶ Pick $v_0 \in \widetilde{X}$, let $Past(v_0) = \{e \mid v_0 \in Future(e)\}$ and



Cutting along Hyperplanes

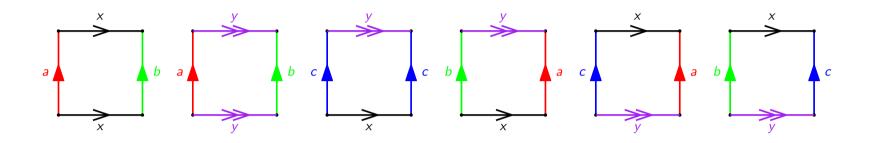
- In \tilde{X} , edges belonging to the same hyperplane have the same orientation
- In a CAT(0) cube complex, hyperplanes are separators
 Pick v₀ ∈ X̃, let Past(v₀) = {e | v₀ ∈ Future(e)} and

$$\widetilde{X}_{v_0} = \bigcap_{e \in \mathsf{Past}(v_0)} \mathsf{Future}(e)$$

- Starting from a finite directed NPC complex X, we have constructed a pointed CAT(0) cube complex X
 _{v0}, i.e., the domain of an event structure
- The number of classes of futures is bounded by |V(X)|
- \blacktriangleright \widetilde{X}_{v_0} is the domain of a regular event structure

Wise's directed NPC complex X

A colored directed NPC complex with 1 vertex, 2 "horizontal" edges (*x* and *y*), 3 "vertical" edges (*a*, *b*, and *c*), 6 squares



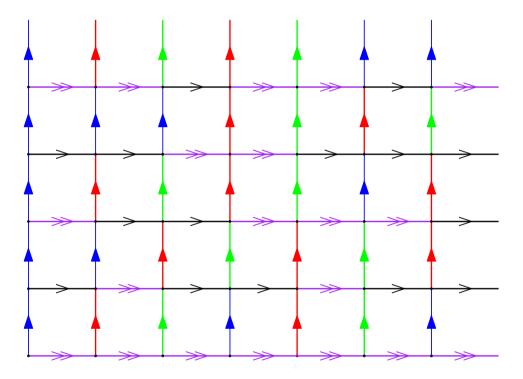
- it defines a square complex
- it is directed non positively curved

Warning!!

Colors have nothing to do with the labels of an event structure

An aperiodic tiling in the universal cover X of X

In the universal cover \widetilde{X} of X, the quarter of plane defined by y^{ω} and c^{ω} is aperiodic



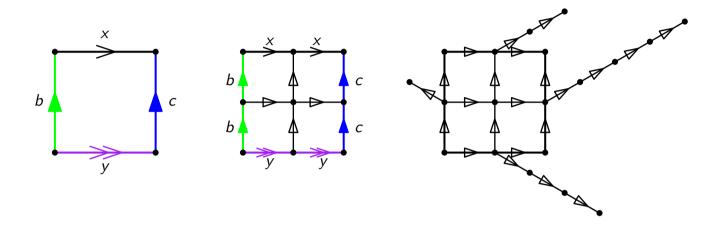
Proposition

[Wise '96]

All horizontal words starting on the side of the quarter of plane are distinct

From \widetilde{X} to a colorless domain \widetilde{W}_{v}

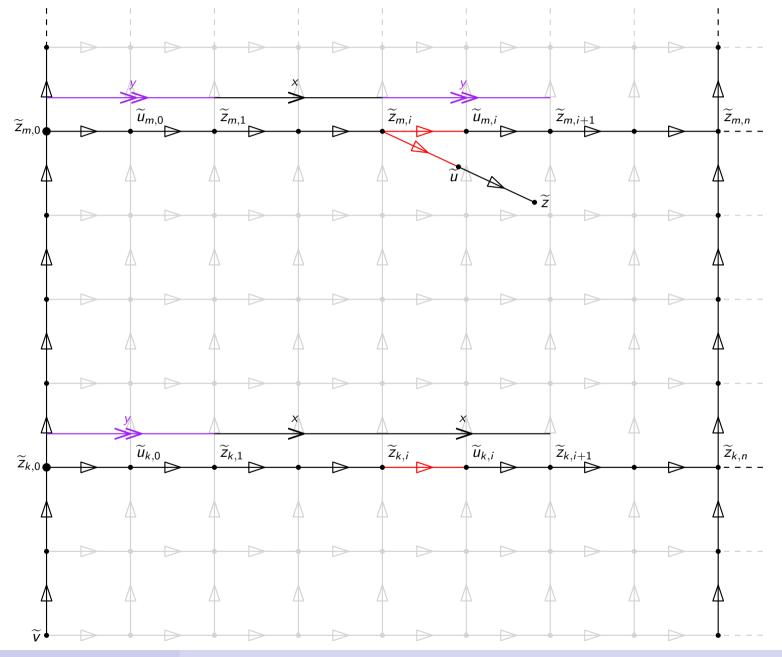
We encode the colors of the edges by a trick



In X, each color is "replaced" by a directed path attached to the "middle" of the edge

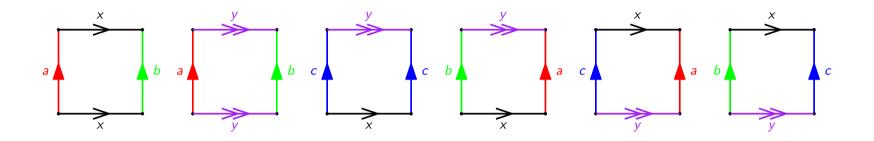
Let W be the colorless directed NPC complex obtained Consider its universal cover \widetilde{W} Pick a vertex v in \widetilde{W} and consider the domain \widetilde{W}_v

\widetilde{W}_{v} has no regular nice labeling



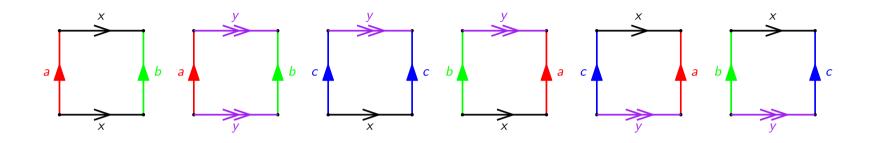
Counterexamples arise from aperiodic tilesets

Wise's complex is obtained from a 4-way deterministic tileset



Counterexamples arise from aperiodic tilesets

Wise's complex is obtained from a 4-way deterministic tileset



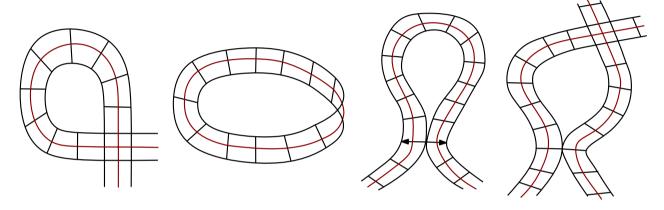
Any aperiodic 4-way deterministic tileset gives a counterexample to Thiagarajan's conjecture

Theorem

- There exists a 4-way deterministic aperiodic tileset
 [Kari, Papasoglu '99]
- Deciding if a 4-way deterministic tileset tiles the plane is undecidable [Lukkarila '09]

On the positive side: special cube complexes

A NPC complex is special if its hyperplanes behave nicely [Haglund, Wise '08]



- (a) no self-intersection
- (b) no 1-sided hyperplane
- (c) no direct self-osculation
- (d) no interosculation

A finite NPC complex is virtually special if it has a finite cover that is special

1-safe Petri nets and special cube complexes

Theorem

An event structure \mathcal{E} admits a regular nice labeling

- ⇔ *E* is isomorphic to the event structure arising from a 1-safe Petri Net [Thiagarajan '96]
- \Leftrightarrow there exists a finite directed (virtually) special cube complex X such that $D(\mathcal{E}) \simeq \widetilde{X}_{v}$

MSO on Trace Regular Event Structures

Given a regular trace event structure $\mathcal{E}_N = (E, \leq, \#)$ with a regular trace labeling $\lambda : E \to \Sigma$, the MSO theory of \mathcal{E}_N is defined by:

- First-order variables x, y, \ldots representing events of \mathcal{E}_N
- second-order variables X, Y, ... representing sets of events of E_N
- ► atomic propositions $R_a(x)$ ($a \in \Sigma$), $x \leq y$, $x \in X$
- boolean connectors \neg, \land and quantifiers \exists

MSO on Trace Regular Event Structures

Given a regular trace event structure $\mathcal{E}_N = (E, \leq, \#)$ with a regular trace labeling $\lambda : E \to \Sigma$, the MSO theory of \mathcal{E}_N is defined by:

- First-order variables x, y, \ldots representing events of \mathcal{E}_N
- second-order variables X, Y, ... representing sets of events of E_N
- ► atomic propositions $R_a(x)$ ($a \in \Sigma$), $x \leq y$, $x \in X$
- ▶ boolean connectors \neg, \land and quantifiers \exists

One can express also

- ▶ \lor , \Rightarrow , \Leftrightarrow , \forall , \subseteq , ... (as usual)
- the conflict # and the concurrency || relations
- the fact that a set is a configuration

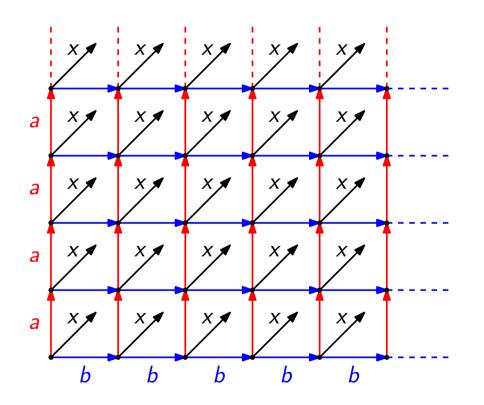
When is $MSO(\mathcal{E}_N)$ decidable?

Question

Given a regular trace event structure $\mathcal{E}_N = (E, \leq, \#, \lambda)$, and an MSO sentence φ , can we decide if $\mathcal{E}_N \models \varphi$?

Not always [Walukiewicz]

One can encode problems that are undecidable on a grid



Thiagarajan's MSO conjecture

 $\mathcal{E} = (E, \leq, \#)$ is grid free if there is no dijoint sets $X, Y, Z \subseteq E$ such that

$$\blacktriangleright \forall x_i \in X, y_j \in Y, x_i || y_j$$

▶ there is a bijection $g : X \times Y \rightarrow Z$ such that if $z = g(x_i, y_j)$

$$\forall i', x_{i'} \leq z \text{ iff } i' \leq i$$

 $\blacktriangleright \quad \forall j', \, y_{j'} \leq z \text{ iff } j' \leq j$

Thiagarajan's MSO Conjecture '14

Given a regular trace event structure $\mathcal{E}_N = (E, \leq, \#, \lambda)$, the MSO(\mathcal{E}_N) is decidable iff \mathcal{E}_N is grid-free

Hyperbolic median graphs

Proposition [Folklore]

A median graph *G* is hyperbolic iff isometric square grids of *G* are bounded

Proposition

For a regular event structure $\mathcal{E} = (E, \leq, \#)$, $D(\mathcal{E})$ is hyperbolic iff there is no disjoint conflict-free infinite sets $X, Y \subseteq E$ such that $\forall x \in X, y \in Y, x || y$

Corollary

If $D(\mathcal{E})$ is hyperbolic, then \mathcal{E} is grid-free

The MSO logic of the domains $MSO(D(\mathcal{E}))$

Given a trace regular event structure $\mathcal{E} = (E, \leq, \#, \lambda), D(\mathcal{E})$ is a directed labeled digraph $(V, (E_a)_{a \in \Sigma})$

$MSO(D(\mathcal{E})))$

- First-order variables x, y, \ldots representing vertices of $D(\mathcal{E})$
- second-order variables X, Y, ... representing sets of vertices of D(E)
- ► atomic propositions $E_a(x, y)$ ($a \in \Sigma$), $x \in X$
- ► boolean connectors \neg, \land and quantifiers \exists

The MSO logic of the domains $MSO(D(\mathcal{E}))$

Given a trace regular event structure $\mathcal{E} = (E, \leq, \#, \lambda), D(\mathcal{E})$ is a directed labeled digraph $(V, (E_a)_{a \in \Sigma})$

$MSO(D(\mathcal{E})))$

- First-order variables x, y, \ldots representing vertices of $D(\mathcal{E})$
- second-order variables X, Y, ... representing sets of vertices of D(E)
- ► atomic propositions $E_a(x, y)$ ($a \in \Sigma$), $x \in X$
- ▶ boolean connectors \neg, \land and quantifiers \exists

Proposition

If $MSO(D(\mathcal{E}))$ is decidable, then $MSO(\mathcal{E})$ is decidable

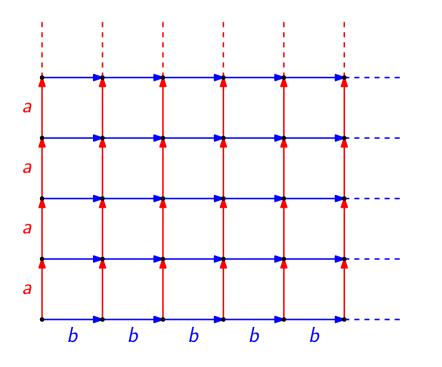
The converse is not true

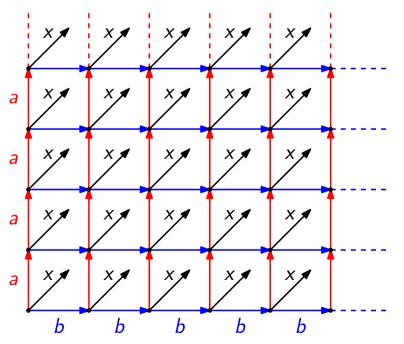
The hairing of an event structure

Given an event structure $\mathcal{E} = (E, \leq, \#)$, the hairing of \mathcal{E} is $\dot{\mathcal{E}} = (\dot{E}, \leq, \#)$ with:

- $E = E \cup E_C$ where $E_C = \{e_c \mid c \in D(\mathcal{E})\}$ is a set of new events
- ▶ for any hair event $e_c \in E_c$ and any $e \in E$,
 - $e \leq e_c$ if $e \in c$

 $\blacktriangleright e \# e_c$ otherwise





The hairing of an event structure

Given an event structure $\mathcal{E} = (E, \leq, \#)$, the hairing of \mathcal{E} is $\dot{\mathcal{E}} = (\dot{E}, \leq, \#)$ with:

- $\dot{E} = E \cup E_C$ where $E_C = \{e_c \mid c \in D(\mathcal{E})\}$ is a set of new events
- ▶ for any hair event $e_c \in E_c$ and any $e \in \dot{E}$,
 - $\blacktriangleright e \leq e_c \text{ if } e \in c$
 - $e \# e_c$ otherwise

Theorem

If $MSO(\dot{\mathcal{E}})$ is decidable, then $MSO(D(\mathcal{E}))$ is decicable

The hairing of an event structure

Given an event structure $\mathcal{E} = (E, \leq, \#)$, the hairing of \mathcal{E} is $\dot{\mathcal{E}} = (\dot{E}, \leq, \#)$ with:

- $\dot{E} = E \cup E_C$ where $E_C = \{e_c \mid c \in D(\mathcal{E})\}$ is a set of new events
- ▶ for any hair event $e_c \in E_c$ and any $e \in \dot{E}$,
 - $\blacktriangleright e \leq e_c \text{ if } e \in c$
 - $e \# e_c$ otherwise

Theorem

If $MSO(\dot{\mathcal{E}})$ is decidable, then $MSO(D(\mathcal{E}))$ is decicable

Question

```
When is MSO(D(\mathcal{E})) decicable ?
```

Decidability of $MSO(D(\mathcal{E}))$

Theorem

For a regular trace event structure $\mathcal{E} = (E, \leq, \#, \lambda)$, the following are equivalent

- (1) $MSO(D(\mathcal{E}))$ is decidable
- (2) $D(\mathcal{E})$ has bounded treewidth
- (3) the clusters of $D(\mathcal{E})$ have bounded diameter
- (4) $D(\mathcal{E})$ is a context-free graph

Decidability of $MSO(D(\mathcal{E}))$

Theorem

For a regular trace event structure $\mathcal{E} = (E, \leq, \#, \lambda)$, the following are equivalent

- (1) $MSO(D(\mathcal{E}))$ is decidable
- (2) $D(\mathcal{E})$ has bounded treewidth
- (3) the clusters of $D(\mathcal{E})$ have bounded diameter
- (4) $D(\mathcal{E})$ is a context-free graph

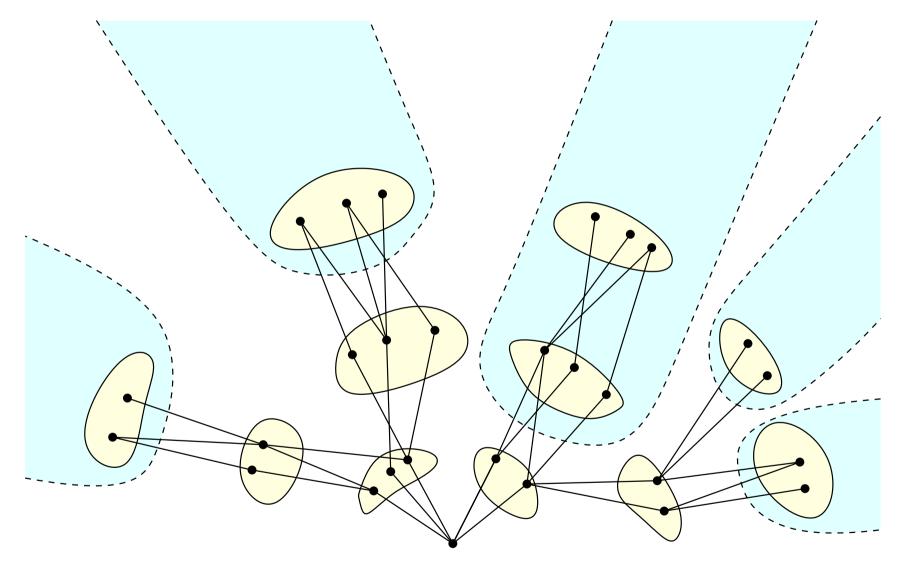
$$(1) \Rightarrow (2)$$
 [Courcelle '94 + Seese '91]

$$(2) \Rightarrow (3)$$
 not today

$$(3) \Rightarrow (4)$$
 [Badouel, Darondeau, and Raoult '99]

 $(4) \Rightarrow (1)$ [Müller and Schupp '85]

Clusters, Ends and Context-free Graphs



- Clusters are in yellow, Some ends are in blue
- A graph is context-free if it has finitely many types of ends

Up to hairing, we can work with $D(\mathcal{E})$

Theorem

For a trace regular event structure $\mathcal{E} = (E, \leq, \#, \lambda)$, the following are equivalent

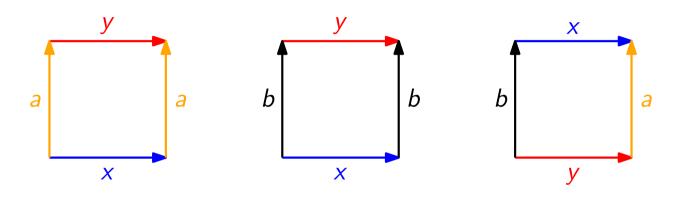
- (1) $MSO(D(\mathcal{E}))$ is decicable
- (2) $MSO(\dot{\mathcal{E}})$ is decidable
- (3) $MSO(D(\dot{\mathcal{E}}))$ is decicable

Question

- Is there a grid-free regular trace event structure & such that D(&) is not context-free?
- Is there a regular trace event structure & such that D(&) is hyperbolic and not context-free?

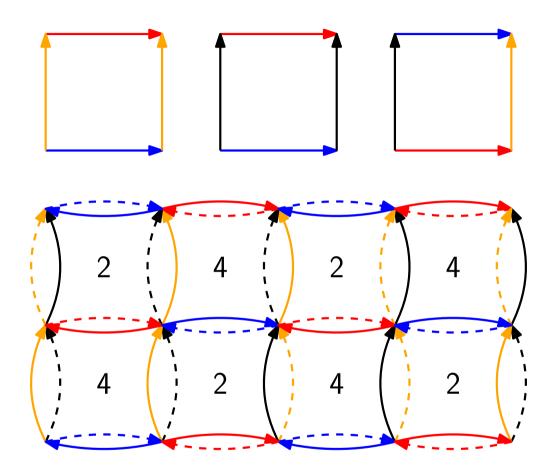
Another complex defined from a set of tiles

A colored directed NPC complex Z with 1 vertex, 2 "horizontal" edges (x and y), 2 "vertical" edges (a and b), 3 squares:



- \triangleright Z is a square complex
- Z is directed non positively curved
- Z is not special

Z is virtually special

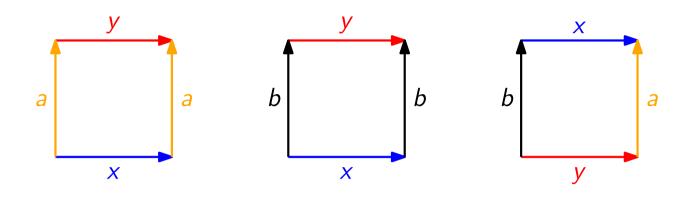


Proposition

 \widetilde{Z}_{v} is the domain of a regular trace event structure \mathcal{E}_{Z}

On Two Thiagarajan's Conjectures

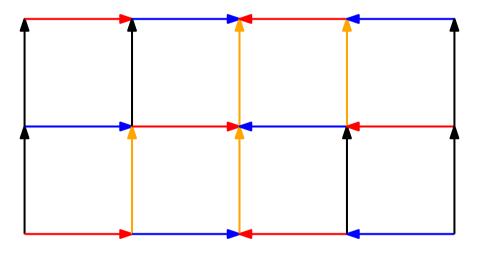
\widetilde{Z}_v is hyperbolic



- The tile set defining Z does not tile the plane
- the isometric square grids of \widetilde{Z}_{v} are bounded
- $\blacktriangleright \widetilde{Z}_{v}$ is hyperbolic and thus \mathcal{E}_{Z} is grid-free

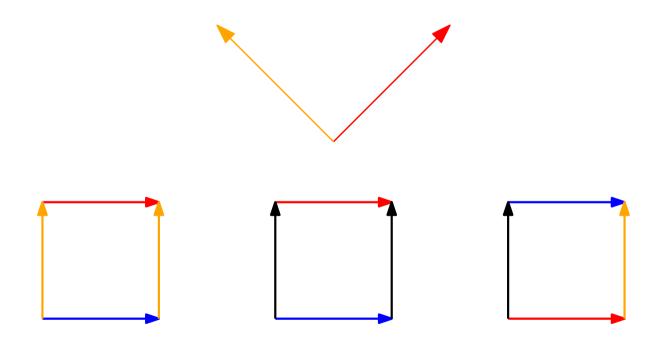
\widetilde{Z}_v is hyperbolic but not \widetilde{Z}

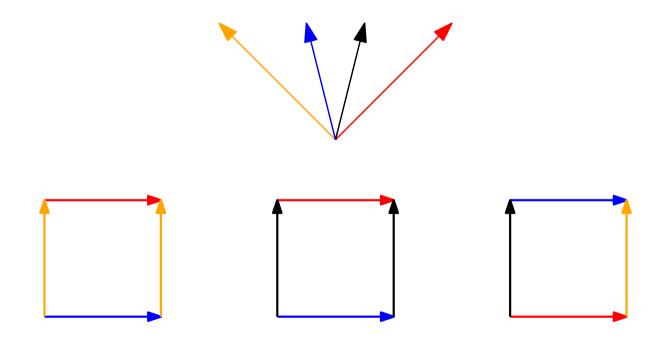
Remark \widetilde{Z}_{v} is hyperbolic, but \widetilde{Z} is not

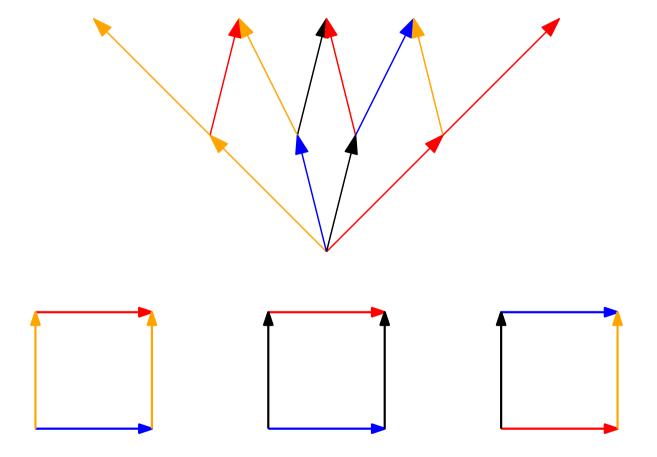


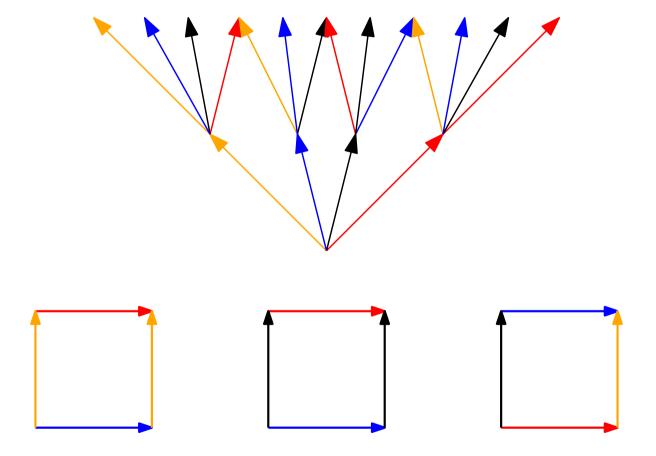
Question

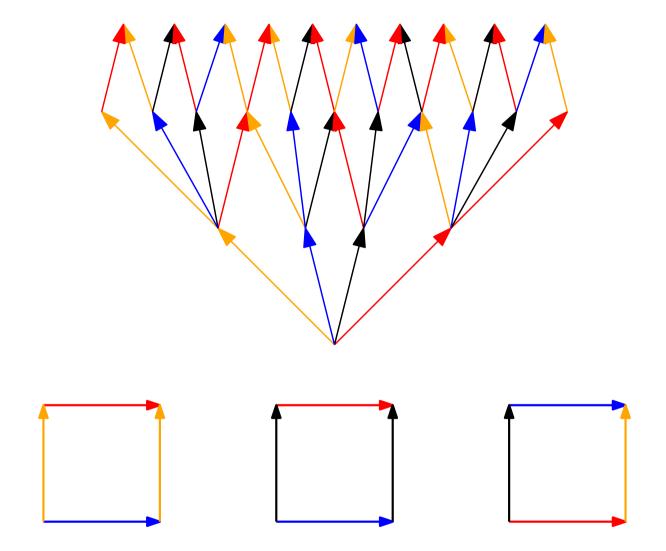
When X is a finite NPC complex such that all X_v are hyperbolic, is X special?

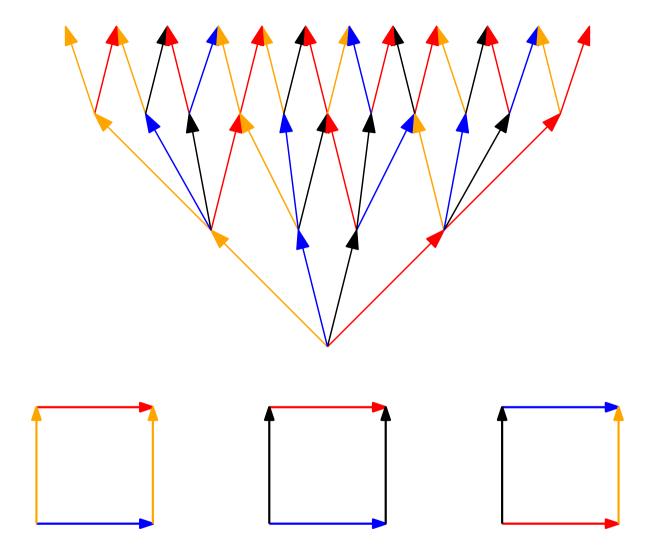










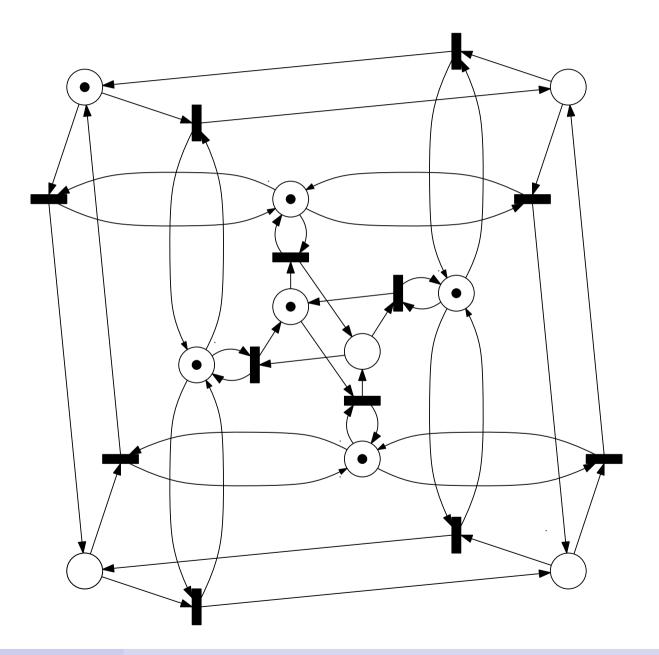


A Counterexample to Thiagarajan's MSO conjecture

Theorem

 $\dot{\mathcal{E}}_{Z}$ is grid-free but $MSO(\dot{\mathcal{E}}_{Z})$ is undecidable

The 1-safe Petri net N_Z



Negative results,

- A counter-example to Thiagarajan's regularity conjecture
- A counter-example to Thiagarajan's MSO conjecture

- Negative results,
 - A counter-example to Thiagarajan's regularity conjecture
 - A counter-example to Thiagarajan's MSO conjecture
- On the positive side, the regularity conjecture is true for particular ("antinomic") cases
 - conflict-free event structures [Nielsen, Thiagarajan '02]
 - context-free event domains

[Badouel, Darondeau, Raoult '99]

domains obtained from finite NPC complexes with an hyperbolic universal cover

- Negative results,
 - A counter-example to Thiagarajan's regularity conjecture
 - A counter-example to Thiagarajan's MSO conjecture
- On the positive side, the regularity conjecture is true for particular ("antinomic") cases
 - conflict-free event structures [Nielsen, Thiagarajan '02]
 - context-free event domains

[Badouel, Darondeau, Raoult '99]

domains obtained from finite NPC complexes with an hyperbolic universal cover

Questions:

- Is Thiagarajan's regularity conjecture true for hyperbolic domains?
- Can we decide if a regular event structure admits a regular nice labelling?

- Nice connections between event structures and NPC complexes
 - CAT(0) cube complexes correspond to event structures
 - finite (virtually) special cube complexes correspond to trace regular event structures
 - Question: Do finite NPC complexes correspond to regular event structures?

- Nice connections between event structures and NPC complexes
 - CAT(0) cube complexes correspond to event structures
 - finite (virtually) special cube complexes correspond to trace regular event structures
 - Question: Do finite NPC complexes correspond to regular event structures?

Thank you! Questions?